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PREFACE

The ideas of Du Bois-Reymond’s Infinitärcalcül are of great and
growing importance in all branches of the theory of functions. With
the particular system of notation that he invented, it is, no doubt, quite
possible to dispense; but it can hardly be denied that the notation is
exceedingly useful, being clear, concise, and expressive in a very high
degree. In any case Du Bois-Reymond was a mathematician of such
power and originality that it would be a great pity if so much of his
best work were allowed to be forgotten.

There is, in Du Bois-Reymond’s original memoirs, a good deal that
would not be accepted as conclusive by modern analysts. He is also
at times exceedingly obscure; his work would beyond doubt have at-
tracted much more attention had it not been for the somewhat repug-
nant garb in which he was unfortunately wont to clothe his most valu-
able ideas. I have therefore attempted, in the following pages, to bring
the Infinitärcalcül up to date, stating explicitly and proving carefully
a number of general theorems the truth of which Du Bois-Reymond
seems to have tacitly assumed—I may instance in particular the theo-
rem of iii. § 2.

I have to thank Messrs J. E. Littlewood and G. N. Watson for
their kindness in reading the proof-sheets, and Mr J. Jackson for the
numerical results contained in Appendix III.

G. H. H.
Trinity College,

April, 1910.
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I.

INTRODUCTION.

1. The notions of the ‘order of greatness’ or ‘order of smallness’
of a function f(n) of a positive integral variable n, when n is ‘large,’
or of a function f(x) of a continuous variable x, when x is ‘large’ or
‘small’ or ‘nearly equal to a,’ are of the greatest importance even in
the most elementary stages of mathematical analysis.∗ The student
soon learns that as x tends to infinity (x → ∞) then also x2 → ∞,
and moreover that x2 tends to infinity more rapidly than x, i.e. that
the ratio x2/x tends to infinity as well; and that x3 tends to infinity
more rapidly than x2, and so on indefinitely: and it is not long before
he begins to appreciate the idea of a ‘scale of infinity’ (xn) formed by
the functions x, x2, x3, . . . , xn, . . . . This scale he may supplement
and to some extent complete by the interpolation of fractional powers
of x, and, when he is familiar with the elements of the theory of the
logarithmic and exponential functions, of irrational powers: and so he
obtains a scale (xα), where α is any positive number, formed by all
possible positive powers of x. He then learns that there are functions
whose rates of increase cannot be measured by any of the functions of
this scale: that log x, for example, tends to infinity more slowly, and ex

more rapidly, than any power of x; and that x/(log x) tends to infinity
more slowly than x, but more rapidly than any power of x less than
the first.

As we proceed further in analysis, and come into contact with its
most modern developments, such as the theory of Fourier’s series, the
theory of integral functions, or the theory of singular points of analytic
functions, the importance of these ideas becomes greater and greater.
It is the systematic study of them, the investigation of general theo-
rems concerning them and ready methods of handling them, that is
the subject of Paul du Bois-Reymond’s Infinitärcalcül or ‘calculus of
infinities.’

∗See, for instance, my Course of pure mathematics, pp. 168 et seq., 183 et seq.,
344 et seq., 350.
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2. The notion of the ‘order’ or the ‘rate of increase’ of a function
is essentially a relative one. If we wish to say that ‘the rate of increase
of f(x) is so and so’ all we can say is that it is greater than, equal to,
or less than that of some other function φ(x).

Let us suppose that f and φ are two functions of the continuous
variable x, defined for all values of x greater than a given value x0. Let
us suppose further that f and φ are positive, continuous, and steadily
increasing functions which tend to infinity with x; and let us consider
the ratio f/φ. We must distinguish four cases:

(i) If f/φ → ∞ with x, we shall say that the rate of increase, or
simply the increase, of f is greater than that of φ, and shall write

f � φ.

(ii) If f/φ → 0, we shall say that the increase of f is less than
that of φ, and write

f ≺ φ.

(iii) If f/φ remains, for all values of x however large, between two
fixed positive numbers δ, ∆, so that 0 < δ < f/φ < ∆, we shall say
that the increase of f is equal to that of φ, and write

f � φ.

It may happen, in this case, that f/φ actually tends to a definite
limit. If this is so, we shall write

f �− φ.

Finally, if this limit is unity, we shall write

f ∼ φ.

When we can compare the increase of f with that of some standard
function φ by means of a relation of the type f � φ, we shall say that
φ measures, or simply is, the increase of f . Thus we shall say that the
increase of 2x2 + x+ 3 is x2.
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It usually happens in applications that f/φ is monotonic (i.e.
steadily increasing or steadily decreasing) as well as f and φ them-
selves. It is clear that in this case f/φ must tend to infinity, or zero, or
to a positive limit: so that one of the three cases indicated above must
occur, and we must have f � φ or f ≺ φ or f �− φ (not merely f � φ).
We shall see in a moment that this is not true in general.

(iv) It may happen that f/φ neither tends to infinity nor to zero,
nor remains between fixed positive limits.

Suppose, for example, that φ1, φ2 are two continuous and increasing
functions such that φ1 � φ2. A glance at the figure (Fig. 1) will probably
show with sufficient clearness how we can construct, by means of a ‘staircase’

P1 P2

P3

P4

x1 x2 x3 x4O X

Y
φ1

φ2

f

Fig. 1.

of straight or curved lines, running backwards and forwards between the
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graphs of φ1 and φ2, the graph of a steadily increasing function f such that
f = φ1 for x = x1, x3, . . . and f = φ2 for x = x2, x4, . . . . Then f/φ1 = 1 for
x = x1, x3, . . . , but assumes for x = x2, x4, . . . values which decrease beyond
all limit; while f/φ2 = 1 for x = x2, x4, . . . , but assumes for x = x1, x3, . . .
values which increase beyond all limit; and f/φ, where φ is a function such
that φ1 � φ � φ2, as e.g. φ =

√
φ1φ2, assumes both values which increase

beyond all limit and values which decrease beyond all limit.

Later on (v. § 3) we shall meet with cases of this kind in which the

functions are defined by explicit analytical formulae.

3. If a positive constant δ can be found such that f > δφ for all
sufficiently large values of x, we shall write

f < φ;

and if a positive constant ∆ can be found such that f < ∆φ for all
sufficiently large values of x, we shall write

f 4 φ.

If f < φ and f 4 φ, then f � φ.
It is however important to observe (i) that f < φ is not logically

equivalent to the negation of f ≺ φ∗ and (ii) that it is not logically
equivalent to the alternative ‘f � φ or f � φ.’ Thus, in the example
discussed at the end of § 2, φ1 < f < φ2, but no one of the relations
φ1 � f , etc. holds. If however we know that one of the relations f � φ,
f � φ, f ≺ φ must hold, then these various assertions are logically
equivalent.

The reader will be able to prove without difficulty that the symbols
�, �, ≺ satisfy the following theorems.

If f � φ, φ < ψ, then f � ψ.

If f < φ, φ � ψ, then f � ψ.

If f < φ, φ < ψ, then f < ψ.

If f � φ, φ � ψ, then f � ψ.

∗The relations f < φ, f ≺ φ are mutually exclusive but not exhaustive: f < φ
implies the negation of f ≺ φ, but the converse is not true.
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If f < φ, then f + φ � f .

If f � φ, then f − φ � f .

If f � φ, f1 � φ1, then f + f1 � φ+ φ1.

If f � φ, f1 � φ1, then f + f1 < φ+ φ1.

If f � φ, f1 � φ1, then f + f1 � φ+ φ1.

If f � φ, f1 < φ1, then ff1 � φφ1.

If f � φ, f1 � φ1, then ff1 � φφ1.

Many other obvious results of the same character might be stated,
but these seem the most important. The reader will find it instructive to
state for himself a series of similar theorems involving also the symbols
�− and ∼.

4. So far we have supposed that the functions considered all tend
to infinity with x. There is nothing to prevent us from including also
the case in which f or φ tends steadily to zero, or to a limit other than
zero. Thus we may write x � 1, or x � 1/x, or 1/x � 1/x2. Bearing
this in mind the reader should frame a series of theorems similar to
those of § 3 but having reference to quotients instead of to sums or
products.

It is also convenient to extend our definitions so as to apply to
negative functions which tend steadily to −∞ or to 0 or to some other
limit. In such cases we make no distinction, when using the symbols
�, ≺, �, �−, between the function and its modulus: thus we write
−x ≺ −x2 or −1/x ≺ 1, meaning thereby exactly the same as by
x ≺ x2 or 1/x ≺ 1. But f ∼ φ is of course to be interpreted as a
statement about the actual functions and not about their moduli.

It will be well to state at this point, once for all, that all functions
referred to in this tract, from here onwards, are to be understood, unless
the contrary is expressly stated or obviously implied, to be positive,
continuous, and monotonic, increasing of course if they tend to∞, and
decreasing if they tend to 0. But it is sometimes convenient to use our
symbols even when this is not true of all the functions concerned; to
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write, for example,

1 + sin x ≺ x, x2 � x sinx,

meaning by the first formula simply that |1+sinx|/x→ 0. This kind of
use may clearly be extended even to complex functions (e.g. eix ≺ x).

Again, we have so far confined our attention to functions of a con-
tinuous variable x which tends to +∞. This case includes that which is
perhaps even more important in applications, that of functions of the
positive integral variable n: we have only to disregard values of x other
than integral values. Thus n! � n2, −1/n ≺ n.

Finally, by putting x = −y, x = 1/y, or x = 1/(y−a), we are led to
consider functions of a continuous variable y which tends to −∞ or 0
or a: the reader will find no difficulty in extending the considerations
which precede to cases such as these.

In what follows we shall generally state and prove our theorems
only for the case with which we started, that of indefinitely increasing
functions of an indefinitely increasing continuous variable, and shall
leave to the reader the task of formulating the corresponding theorems
for the other cases. We shall in fact always adopt this course, except
on the rare occasions when there is some essential difference between
different cases.

5. There are some other symbols which we shall sometimes find it
convenient to use in special senses.

By
O(φ)

we shall denote a function f , otherwise unspecified, but such that

|f | < Kφ,

where K is a positive constant, and φ a positive function of x: this
notation is due to Landau. Thus

x+ 1 = O(x), x = O(x2), sinx = O(1).
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We shall follow Borel in using the same letter K in a whole series
of inequalities to denote a positive constant, not necessarily the same
in all inequalities where it occurs. Thus

sinx < K, 2x+ 1 < Kx, xm < Kex.

If we use K thus in any finite number of inequalities which (like
the first two above) do not involve any variables other than x, or
whatever other variable we are primarily considering, then all the
values of K lie between certain absolutely fixed limits K1 and K2 (thus
K1 might be 10−10 and K2 be 1010). In this case all the K’s satisfy
0 < K1 < K < K2, and every relation f < Kφ might be replaced by
f < K2φ, and every relation f > Kφ by f > K1φ. But we shall also
have occasion to use K in equalities which (like the third above)
involve a parameter (here m). In this case K, though independent
of x, is a function of m. Suppose that α, β, . . . are all the parameters
which occur in this way in this tract. Then if we give any special
system of values to α, β, . . . , we can determine K1, K2 as above.
Thus all our K’s satisfy

0 < K1(α, β, . . . ) < K < K2(α, β, . . . ),

where K1, K2 are positive functions of α, β, . . . defined for any permis-
sible set of values of those parameters. But K1 has zero for its lower
limit; by choosing α, β, . . . appropriately we can make K1 as small as
we please—and, of course, K2 as large as we please.∗

It is clear that the three assertions

f = O(φ), |f | < Kφ, f 4 φ

are precisely equivalent to one another.
When a function f possesses any property for all values of x greater

than some definite value (this value of course depending on the nature
of the particular property) we shall say that f possesses the property
for x > x0. Thus

x > 100 (x > x0), ex > 100x2 (x > x0).

∗I am indebted to Mr Littlewood for the substance of these remarks.
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We shall use δ to denote an arbitrarily small but fixed positive
number, and ∆ to denote an arbitrarily great but likewise fixed positive
number. Thus

f < δφ (x > x0)

means ‘however small δ, we can find x0 so that f < δφ for x > x0,’ i.e.
means the same as f ≺ φ; and φ > ∆f (x > x0) means the same: and

(log x)∆ ≺ xδ

means ‘any power of log x, however great, tends to infinity more slowly
than any positive power of x, however small.’

Finally, we denote by ε a function (of a variable or variables indi-
cated by the context or by a suffix) whose limit is zero when the variable
or variables are made to tend to infinity or to their limits in the way
we happen to be considering. Thus

f = φ(1 + ε), f ∼ φ

are equivalent to one another.
In order to become familiar with the use of the symbols defined

in the preceding sections the reader is advised to verify the following
relations; in them Pm(x), Qn(x) denote polynomials whose degrees are
m and n and whose leading coefficients are positive:

Pm(x) � Qn(x) (m > n), Pm(x)�−Qn(x) (m = n),

Pm(x)�− xm, Pm(x)/Qn(x)�− xm−n,√
ax2 + 2bx+ c�− x (a > 0),

√
x+ a ∼

√
x,

√
x+ a−

√
x ∼ a/2

√
x,

√
x+ a−

√
x = O(1/

√
x),

ex � x∆, ex
2

� e∆x, ee
x

� ex
∆

,

log x ≺ xδ, logPm(x)�− logQn(x), log logPm(x) ∼ log logQn(x),

x+ a sinx ∼ x, x(a+ sinx) � x (a > 1),

ea+sinx � 1, coshx ∼ sinhx�− ex,
xm = O(eδx), (log x)/x = O(xδ−1),
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1 +
1

2
+ · · ·+ 1

n
� 1, 1 +

1

22
+ · · ·+ 1

n2
�− 1,

1 +
1

2
+ · · ·+ 1

n
∼ log n, 1 +

1

2
+ · · ·+ 1

n
− log n�− 1,

n! ≺ nn, n! � e∆n, n! = nn
1+ε

= nn(1+ε),

n! ∼ nn+ 1
2 e−n

√
2π, n! (e/n)n = (1 + ε)

√
2πn,∫ x

1

dt

t
� 1,

∫ x

1

dt

t
∼ log x,

∫ x

2

dt

log t
∼ x

log x
.

II.

SCALES OF INFINITY IN GENERAL.

1. If we start from a function φ, such that φ � 1, we can, in a
variety of ways, form a series of functions

φ1 = φ, φ2, φ3, . . . , φn, . . .

such that the increase of each function is greater than that of its pre-
decessor. Such a sequence of functions we shall denote for shortness
by (φn).

One obvious method is to take φn = φn. Another is as follows: If
φ � x, it is clear that

φ{φ(x)}/φ(x)→∞,

and so φ2(x) = φφ(x) � φ(x); similarly φ3(x) = φφ2(x) � φ2(x), and
so on.∗

Thus the first method, with φ = x, gives the scale x, x2, x3, . . .
or (xn); the second, with φ = x2, gives the scale x2, x4, x8, . . . or (x2n).

These scales are enumerable scales, formed by a simple progression of

functions. We can also, of course, by replacing the integral parameter n by

∗For some results as to the increase of such iterated functions see vii. § 2 (vi).
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a continuous parameter α, define scales containing a non-enumerable mul-

tiplicity of functions: the simplest is (xα), where α is any positive number.

But such scales fill a subordinate rôle in the theory.

It is obvious that we can always insert a new term (and therefore, of
course, any number of new terms) in a scale at the beginning or between
any two terms: thus

√
φ (or φα, where α is any positive number less

than unity) has an increase less than that of any term of the scale,
and

√
φnφn+1 or φαnφ

1−α
n+1 has an increase intermediate between those

of φn and φn+1. A less obvious and far more important theorem is the
following

Theorem of Paul du Bois-Reymond. Given any ascending
scale of increasing functions φn, i.e. a series of functions such that
φ1 ≺ φ2 ≺ φ3 ≺ . . . , we can always find a function f which increases
more rapidly than any function of the scale, i.e. which satisfies the
relation φn ≺ f for all values of n.

In view of the fundamental importance of this theorem we shall give
two entirely different proofs.

2. (i) We know that φn+1 � φn for all values of n, but this, of
course, does not necessarily imply that φn+1 > φn for all values of
x and n in question.∗ We can, however, construct a new scale of func-
tions ψn such that

(a) ψn is identical with φn for all values of x from a certain value
xn onwards (xn, of course, depending upon n);

(b) ψn+1 > ψn for all values of x and n.
For suppose that we have constructed such a scale up to its

nth term ψn. Then it is easy to see how to construct ψn+1. Since
φn+1 � φn, φn ∼ ψn, it follows that φn+1 � ψn, and so φn+1 > ψn
from a certain value of x (say xn+1) onwards. For x > xn+1 we take
ψn+1 = φn+1. For x < xn+1 we give ψn+1 a value equal to the greater

∗φn+1 � φn implies φn+1 > φn for sufficiently large values of x, say for x > xn.
But xn may tend to ∞ with n. Thus if φn = xn/n! we have xn = n+ 1.
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of the values of φn+1, ψn. Then it is obvious that ψn+1 satisfies the
conditions (a) and (b).

Now let
f(n) = ψn(n).

From f(n) we can deduce a continuous and increasing function f(x),
such that

ψn(x) < f(x) < ψn+1(x)

for n < x < n+ 1, by joining the points (n, ψn(n)) by straight lines or
suitably chosen arcs of curves.

It is perhaps worth while to call attention explicitly to a small point that
has sometimes been overlooked (see, e.g., Borel, Leçons sur la théorie des
fonctions, p. 114; Leçons sur les séries à termes positifs, p. 26). It is not
always the case that the use of straight lines will ensure

f(x) > ψn(x)

for x > n (see, for example, Fig. 2, where the dotted line represents an

appropriate arc).

Then
f/ψn > ψn+1/ψn

for x > n + 1, and so f � ψn; therefore f � φn and the theorem is
proved.

The proof which precedes may be made more general by taking

f(n) = ψλn(n), where λn is an integer depending upon n and tending

steadily to infinity with n.

(ii) The second proof of Du Bois-Reymond’s Theorem proceeds on
entirely different lines. We can always choose positive coefficients an so
that

f(x) =
∞∑
1

anψn(x)

is convergent for all values of x. This will certainly be the case, for
instance, if

1/an = ψ1(1)ψ2(2) . . . ψn(n).
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n n + 1

ψn

ψn+1

Fig. 2.

For then, if ν is any integer greater than x, ψn(x) < ψn(n) for n > ν,
and the series will certainly be convergent if

∞∑
ν

1

ψ1(1)ψ2(2) . . . ψn−1(n− 1)

is convergent, as is obviously the case.

Also

f(x)/ψn(x) > an+1ψn+1(x)/ψn(x)→∞,

so that f � φn for all values of n.
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3. Suppose, e.g., that φn = xn. If we restrict ourselves to values of x
greater than 1, we may take ψn = φn = xn. The first method of construction
would naturally lead to

f = nn = en logn,

or f = (λn)n, where λn is defined as at the end of § 2 (i), and each of these
functions has an increase greater than that of any power of n. The second
method gives

f(x) =

∞∑
1

xn

112233 . . . nn
.

It is known∗ that when x is large the order of magnitude of this function
is roughly the same as that of

e
1
2

(log x)2/ log log x.

As a matter of fact it is by no means necessary, in general, in order to
ensure the convergence of the series by which f(x) is defined, to suppose
that an decreases so rapidly. It is very generally sufficient to suppose
1/an = φn(n): this is always the case, for example, if φn(x) = {φ(x)}n, as
the series ∑{

φ(x)

φ(n)

}n
is always convergent. This choice of an would, when φ = x, lead to

f(x) =
∑(x

n

)n
∼
√

2πx

e
ex/e.†

But the simplest choice here is 1/an = n!, when

f(x) =
∑ xn

n!
= ex − 1;

it is naturally convenient to disregard the irrelevant term −1.

∗Messenger of Mathematics, vol. 34, p. 101.
†Lindelöf, Acta Societatis Fennicae, t. 31, p. 41; Le Roy, Bulletin des Sciences

Mathématiques, t. 24, p. 245.
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4. We can always suppose, if we please, that f(x) is defined by a
power series

∑
anx

n convergent for all values of x, in virtue of a theorem
of Poincaré’s∗ which is of sufficient intrinsic interest to deserve a formal
statement and proof.

Given any continuous increasing function φ(x), we can always find an
integral function f(x) (i.e. a function f(x) defined by a power series

∑
anx

n

convergent for all values of x) such that f(x) � φ(x).

The following simple proof is due to Borel.†

Let Φ(x) be any function (such as the square of φ) such that Φ � φ.
Take an increasing sequence of numbers an such that an →∞, and another
sequence of numbers bn such that

a1 < b2 < a2 < b3 < a3 < . . . ;

and let

f(x) =
∑(

x

bn

)νn
,

where νn is an integer and νn+1 > νn. This series is convergent for all values
of x; for the nth root of the nth term is, for sufficiently large values of n, not
greater than x/bn, and so tends to zero. Now suppose an 6 x < an+1; then

f(x) >

(
an
bn

)νn
.

Since an > bn we can suppose νn so chosen that (i) νn is greater than any
of ν1, ν2, . . . , νn−1 and (ii) (

an
bn

)νn
> Φ(an+1).

Then

f(x) > Φ(an+1) > Φ(x),

and so f � φ.

∗American Journal of Mathematics, vol. 14, p. 214.
†Leçons sur les séries à termes positifs, p. 27.
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5. So far we have confined our attention to ascending scales, such
as x, x2, x3, . . . , xn, . . . or (xn); but it is obvious that we may consider
in a similar manner descending scales such as x,

√
x, 3
√
x, . . . , n

√
x, . . .

or ( n
√
x). It is very generally (though not always) true that if (φn) is an

ascending scale, and ψ denotes the function inverse to φ, then (ψn) is
a descending scale.

If φ > φ for all values of x (or all values greater than some definite value),

then a glance at Fig. 3 is enough to show that if ψ and ψ are the functions
inverse to φ and φ, then ψ < ψ for all values of x (or all values greater than
some definite value). We have only to remember that the graph of ψ may
be obtained from that of φ by looking at the latter from a different point
of view (interchanging the rôles of x and y). But it is not true that φ � φ

involves ψ ≺ ψ. Thus ex � ex/x. The function inverse to ex is log x: the
function inverse to ex/x is obtained by solving the equation x = ey/y with
respect to y. This equation gives

y = log x+ log y,

and it is easy to see that y ∼ log x.

O x

y

φ

φ

Fig. 3.



SCALES OF INFINITY IN GENERAL. 16

Given a scale of increasing functions φn such that

φ1 � φ2 � φ3 � . . . � 1,

we can find an increasing function f such that φn � f � 1 for all values
of n. The reader will find no difficulty in modifying the argument of
§ 2 (i) so as to establish this proposition.

6. The following extensions of Du Bois-Reymond’s Theorem
(and the corresponding theorem for descending scales) are due to
Hadamard.∗

Given
φ1 ≺ φ2 ≺ φ3 ≺ . . . ≺ φn ≺ . . . ≺ Φ,

we can find f so that φn ≺ f ≺ Φ for all values of n.
Given

ψ1 � ψ2 � ψ3 � . . . � ψn � . . . � Ψ,

we can find f so that ψn � f � Ψ for all values of n.
Given an ascending sequence (φn) and a descending sequence (ψp)

such that φn ≺ ψp for all values of n and p, we can find f so that

φn ≺ f ≺ ψp

for all values of n and p.
To prove the first of these theorems we have only to observe that

Φ/φ1 � Φ/φ2 � . . . � Φ/φn � . . . � 1,

and to construct a function F (as we can in virtue of the theorem of § 5)
which tends to infinity more slowly than any of the functions Φ/φn.
Then

f = Φ/F

is a function such as is required. Similarly for the second theorem. The
third is rather more difficult to prove.

∗Acta Mathematica, t. 18, pp. 319 et seq.
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In the first place, we may suppose that φn+1 > φn for all values of
x and n: for if this is not so we can modify the definitions of the functions φn
as in § 2 (i). Similarly we may suppose ψp+1 < ψp for all values of x and p.

Secondly, we may suppose that, if x is fixed, φn → ∞ as n → ∞, and
ψp → 0 as p → ∞. For if this is not true of the functions given, we can
replace them by Hnφn and Kpψp, where (Hn) is an increasing sequence of
constants, tending to∞ with n, and (Kp) a decreasing sequence of constants
whose limit as p→∞ is zero.

ψp

ψp+1

φn

φn+1

Pn,p

Pn,p+1
Pn+1,p

Fig. 4.

Since ψp � φn but, for any given x, ψp < φn for sufficiently large values
of n, it is clear (see Fig. 4) that the curve y = ψp intersects the curve y = φn
for all sufficiently large values of n (say for n > np).

At this point we shall, in order to avoid unessential detail, introduce a
restrictive hypothesis which can be avoided by a slight modification of the
argument,∗ but which does not seriously impair the generality of the result.
We shall assume that no curve y = ψp intersects any curve y = φn in more
than one point; let us denote this point, if it exists, by Pn,p.

∗See Hadamard’s original paper quoted above.
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If p is fixed, Pn,p exists for n > np; similarly, if n is fixed, Pn,p exists
for p > pn. And as either n or p increases, so do both the ordinate or the
abscissa of Pn,p. The curve ψp contains all the points Pn,p for which p has a
fixed value: and y = φn contains all the points for which n has a fixed value.

It is clear that, in order to define a function f which tends to infinity
more rapidly than any φn and less rapidly than any ψp, all that we have to
do is to draw a curve, making everywhere a positive acute angle with each
of the axes of coordinates, and crossing all the curves y = φn from below to
above, and all the curves y = ψp from above to below.

Choose a positive integer Np, corresponding to each value of p, such that

(i)Np > np and (ii)Np →∞ as p→∞. Then PNp,p exists for each value of p.

And it is clear that we have only to join the points PN1,1, PN2,2, PN3,3, . . .

by straight lines or other suitably chosen arcs of curves in order to obtain a

curve which fulfils our purpose. The theorem is therefore established.

7. Some very interesting considerations relating to scales of infinity
have been developed by Pincherle.∗

We have defined f � φ to mean f/φ → ∞, or, what is the same
thing,

log f − log φ→∞. (1)

We might equally well have defined f � φ to mean

F (f)− F (φ)→∞, (2)

where F (x) is any function which tends steadily to infinity with x
(e.g. x, ex). Let us say that if (2) holds then

f � φ (F ), (3)

so that f � φ is equivalent to f � φ (log x). Similarly we define
f ≺ φ (F ) to mean that F (f)− F (φ)→ −∞, and f � φ (F ) to mean
that F (f)− F (φ) remains between certain fixed limits. Thus

x+ log x � x, x+ log x � x (x),

x+ 1 � x (x), x+ 1 � x (ex),

∗Memorie della Accademia delle Scienze di Bologna (ser. 4, t. 5, p. 739).
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since ex+1 − ex = (e− 1)ex →∞.
It is clear that the more rapid the increase of F , the more likely is

it to discriminate between the rates of increase of two given functions
f and φ. More precisely, if

f � φ (F ),

and F = FF1, where F1 is any increasing function, then will

f � φ (F ).

For

F (f)− F (φ) = F (f)F1(f)− F (φ)F1(φ) > {F (f)− F (φ)}F1(φ)→∞.

8. The substance of the following theorems is due in part to
Pincherle and in part to Du Bois-Reymond.∗

1. However rapid the increase of f , as compared with that of φ,
we can so choose F that f � φ (F ).

2. If f − φ is positive for x > x0, we can so choose F that
f � φ (F ).

3. If f − φ is monotonic and not negative for x > x0, and
f � φ (F ), however great be the increase of F , then f = φ from a
certain value of x onwards.

(1) If f � φ, we may regard f as an increasing function of φ, say

f = θ(φ),

where θ(x) � x. We can choose a constant g greater than 1, and then
choose X so that θ(x) > gx for x > X. Let a be any number greater
than X, and let

a1 = θ(a), a2 = θ(a1), a3 = θ(a2), . . . .

∗Pincherle, l.c.; Du Bois-Reymond, Math. Annalen, Bd. 8, S. 390 et seq.
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Then (an) is an increasing sequence, and an →∞, since an > gna.
We can now construct an increasing function F such that

F (an) = 1
2nK,

where K is a constant. Then if aν−1 6 x 6 aν , aν 6 θ(x) 6 aν+1, and

F{θ(x)} − F (x) < F (aν+1)− F (aν−1) < K.

Accordingly F (f)−F (φ) remains less than a constant, and so the first
theorem is established.

(2) Let f − φ = λ, so that λ > 0. If λ, as x increases, remains
greater than a constant K, then

ef − eφ > (eK − 1)eφ →∞,

so that we may take F (x) = ex.
If it is not true that λ > K, λ assumes values less than any

assignable positive number, as x → ∞. Let λ(x) be defined as the
lower limit of λ(ξ) for ξ 6 x. Then λ tends steadily to zero as x→∞,
and λ 6 λ. We may also regard λ as a steadily decreasing function
of φ, say λ = µ(φ).

Let $(φ) be an increasing function of φ such that $ � 1/µ, µ$ � 1.
Then if

F =

∫ φ

$(t) dt,

F (f)− F (φ) =

∫ φ+λ

φ
$dt >

∫ φ+µ(φ)

φ
$dt > µ(φ)$(φ) � 1,

and F (x) fulfils the requirement of theorem 2. The third theorem is
obviously a mere corollary of the second.

The reader will find it instructive to deduce or prove independently the
following three theorems, which are closely analogous to those which have
just been proved.

1. However great be the increase of f as compared with that of φ, we
can determine an increasing function F such that F (f) � F (φ).
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2. If f − φ is positive for x > x0, we can determine an increasing
function F such that F (f) � F (φ).

3. If f−φ is monotonic and not negative for x > x0, and F (f) � F (φ),
however great the increase of F , then f = φ from a certain value of x
onwards.

To these he may add the theorem (analogous to that proved at the end
of § 7) that f � φ involves F (f) � F (φ) if logF (x)/ log x is an increasing
function (a condition which may for practical purposes be replaced by
F � x).

9. Let us consider some examples of the theorems of the last paragraph.

(i) Let f = xm (m > 1) and φ = x. Then, following the argument of
§ 8 (1), we have θ(φ) = φm. We may take

a = e, a1 = em, a2 = em
2
, . . . , an = em

n
, . . . ,

and we have to define F so that

F (em
n
) = 1

2nK.

The most natural solution of this equation is

F (x) = K log log x/2 logm.

And in fact

F (xm)− F (x) =
K

2 logm
{log(m log x)− log log x} = 1

2K,

so that xm � x (F ).

(ii) Let f = ex + e−x, φ = ex. Following the argument of § 8 (2), we
find

λ = e−x = λ, µ(φ) = 1/φ,

and we may take $(φ) = φ1+α (α > 0). This makes F a constant multiple
of x2+α, and it is easy to verify that

(ex + e−x)k − ekx →∞,

if k > 2.

(iii) The relation F (f) � F (φ) is equivalent to f � φ (logF ). Using

the result of (i) we see that F (xm) � F (x) if F 4 log x. Similarly, using the

result of (ii), we see that F (ex + e−x) � F (ex) if F < ex
k

(k > 2).
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10. Before leaving this part of our subject, let us observe that all
of the substance of §§ 1–6 of this section may be extended to the case
in which our symbols �, etc., are defined by reference to an arbitrary
increasing function F . We leave it as an exercise to the reader to effect
these extensions.

III.

LOGARITHMICO-EXPONENTIAL SCALES.

1. The only scales of infinity that are of any practical importance
in analysis are those which may be constructed by means of the loga-
rithmic and exponential functions.

We have already seen (ii. § 3) that

ex � xn

for any value of n however great. From this it follows that

log x ≺ x1/n

for any value of n.∗

It is easy to deduce that

ee
x

� ex
n

, ee
ex

� ee
xn

, . . . ,

log log x ≺ (log x)1/n, log log log x ≺ (log log x)1/n, . . . .

The repeated logarithmic and exponential functions are so impor-
tant in this subject that it is worth while to adopt a notation for them

∗It was pointed out above (ii. § 5) that φ � φ does not necessarily involve ψ ≺ ψ
(ψ, ψ being the functions inverse to φ, φ). But it does involve ψ < ψ for sufficiently

large values of x, and therefore ψ 4 ψ. Hence φ � φn (for any n) involves ψ 4 ψn
(for any n) and therefore, if (ψn) is a descending scale, as is in this case obvious,
ψ ≺ ψn for any n. For proofs of the relations ex � xn, log x ≺ x1/n, proceeding on
different lines, see my Course of pure mathematics, pp. 345, 350.
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of a less cumbrous character. We shall write

l1x ≡ lx ≡ log x, l2x ≡ llx, l3x ≡ ll2x, . . . ,

e1x ≡ ex ≡ ex, e2x ≡ eex, e3x ≡ ee2x, . . . .

It is easy, with the aid of these functions, to write down any number
of ascending scales, each containing only functions whose increase is
greater than that of any function in any preceding scale; for example

x, x2, . . . , xn, . . . ; ex, e2x, . . . , enx, . . . ;

ex
2

, ex
3

, . . . , ex
n

, . . . ; e2x, e3x, . . . , enx, . . . .

In among the functions of these scales we can of course interpolate
new functions as freely as we like, using, for instance, such functions as

xαeβx
γeδx

ε

,

where α, β, γ, δ, ε are any positive numbers; and we can of course con-
struct non-enumerable (ii. § 1) as well as enumerable scales. Similarly
we can construct any number of descending scales, each composed of
functions whose increase is less than that of any functions in any pre-
ceding scale: for example

lx, (lx)1/2, . . . , (lx)1/n, . . . ; l2x, l3x, . . . , lnx, . . . .

Two special scales are of particularly fundamental importance; the
ascending scale

(E) x, ex, e2x, e3x, . . . ,

and the descending scale

(L) x, lx, l2x, l3x, . . . .

These scales mark the limits of all logarithmic and exponential
scales: it is of course, in virtue of the general theorems of ii., possible
to define functions whose increase is more rapid than that of any enx
or slower than that of any lnx; but, as we shall see in a moment, this
is not possible if we confine ourselves to functions defined by a finite
and explicit formula involving only the ordinary functional symbols of
elementary analysis.
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2. We define a logarithmico-exponential function (shortly, an L-
function) as a real one-valued function defined, for all values of x greater
than some definite value, by a finite combination of the ordinary al-
gebraical symbols (viz. +, −, ×, ÷, n

√
) and the functional symbols

log(. . . ) and e(... ), operating on the variable x and on real constants.

It is to be observed that the result of working out the value of the func-
tion, by substituting x in the formula defining it, is to be real at all stages
of the work. It is important to exclude such a function

1
2{e
√
−x2

+ e−
√
−x2},

which, with a suitable interpretation of the roots, is equal to cosx.

Theorem. Any L-function is ultimately continuous, of constant
sign, and monotonic, and, as x → ∞, tends to ∞, or to zero or to
some other definite limit. Further, if f and φ are L-functions, one or
other of the relations

f � φ, f �− φ, f ≺ φ

holds between them.
We may classify L-functions as follows, by a method due to Liou-

ville.∗ An L-function is of order zero if it is purely algebraical; of order 1
if the functional symbols l(. . . ) and e(. . . ) which occur in it bear only
on algebraical functions; of order 2 if they bear only on algebraical
functions or L-functions of order 1; and so on. Thus

xx
x

= elog xex log x

is of order 3. As the results stated in the theorem are true of algebraical
functions, it is sufficient to prove that, if true of L-functions of order
n− 1, they are true of L-functions of order n.

∗See my tract The integration of functions of a single variable (No. 2 of this
series), pp. 5 et seq., where references to Liouville’s original memoirs are given.
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Let us observe first that if f and φ are L-functions, so is f/φ. Hence
the last part of the theorem is a mere corollary of the first part. Again,
the derivative of an L-function of order n is an L-function of order n (or
less). Hence it is enough to prove that, if the results stated are true of
L-functions of order n− 1, then an L-function of order n is ultimately
continuous and of constant sign, i.e. that it is continuous and cannot
vanish for a series of values of x increasing beyond limit. For, if this
is true of any L-function of order n, it is true of the derivative of any
such function; and therefore the function itself is ultimately continuous
and monotonic.

Now any L-function of order n can be expressed in the form

fn = A{eφ(1)
n−1, eφ

(2)
n−1, . . . , eφ

(r)
n−1, lψ

(1)
n−1, . . . , lψ

(s)
n−1, χ

(1)
n−1, . . . , χ

(t)
n−1}

= A{z1, z2, . . . , zq},

say, where q = r+ s+ t, the functions with suffix n− 1 are L-functions
of order n − 1, and A denotes an algebraical function: and there is
therefore an identical relation

F ≡M0f
p
n +M1f

p−1
n + · · ·+Mp = 0,

where the coefficients are polynomials in z1, z2, . . . , zq. These polyno-
mials are comprised in the class of functions

M =
∑

ρn−1eσn−1(lτ
(1)
n−1)κ1(lτ

(2)
n−1)κ2 . . . (lτ

(h)
n−1)κh ,

in which the κ’s are positive integers, the number of terms in the sum-
mation is finite, and the functions with suffix n−1 are again L-functions
of order n− 1. So also are

dM0

dx
,

dM1

dx
, . . . ,

dMp

dx
,

and the discriminant of F qua function of fn.

Let us suppose our conclusions established in so far as relates to
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functions of the type M . Then it follows by a well known theorem∗

that fn is continuous, and, since fn = 0 involves Mp = 0, that fn also
is ultimately of constant sign.

Hence it is enough to establish our conclusions for functions of the
type M . Let us call

κ1 + κ2 + · · ·+ κh

the degree of a term of M , and let us suppose that the greatest degree
of a term of M is λ, and that there are µ terms of degree λ, and that
the term printed in the expression of M above is one of them.

In the first place it is obvious, from the form of M and the fact that
ey and ly are ultimately continuous when y is ultimately continuous
and monotonic, that M is ultimately continuous. Again, if M vanishes
for values of x surpassing all limit, the same is true of

M/(ρn−1eσn−1),

and therefore, by Rolle’s theorem,† of the derivative of the latter func-
tion. But the reader will easily verify that when we differentiate, and
arrange the terms of the derivative in the same manner as those of M ,
we obtain a function of the same form as M but containing at most
µ− 1 terms of order λ. And by repeating this process we clearly arrive
ultimately at a function of the form

N =
∑

ρn−1eσn−1,

in which there are no factors of the form lτn−1, and which must vanish
for a sequence of values of x surpassing all limit. Hence it is sufficient
for our purpose to prove that this is impossible.

∗If F (x, y) is a function of x and y which vanishes for x = a, y = b, and has

derivatives
∂F

∂x
,
∂F

∂y
continuous about (a, b), and if

∂F

∂y
does not vanish for x = a,

y = b, then there is a unique continuous function y which is equal to b when x = a,
and satisfies the equation F (x, y) = 0 identically. See, e.g., W. H. Young, Proc.
Lond. Math. Soc., vol. 7, pp. 397 et seq.

†If a function possesses a derivative for all values of its argument, the derivative
must have at least one root between any two roots of the function itself.
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Let the number of terms in N be $. Then

d

dx
{N/(ρn−1eσn−1)}

must (for reasons similar to those advanced above) vanish for values
of x surpassing all limit. But when we differentiate, and arrange the
terms of the derivative in the same manner as those of N , we are left
with a function of the same form as N , but containing only $−1 terms.
And it is clear that a repetition of this process leads to the conclusion
that a function of the type

ρn−1eσn−1

vanishes for values of x surpassing all limit, which is ex hypothesi un-
true. Hence the theorem is established.

3. The proof just given, it may be observed, does not in any way
depend upon the fact that the symbols of algebraical functionality,
admitted into the definition of L-functions, are of an explicit character.
We might admit such functions as

e2

√
ly,

where y5 +y−x = 0. But the case contemplated in the definition seems
to be the only one of any interest.

Another interesting theorem is: if f is any L-function, we can find
an integer k such that

f ≺ ekx;

and, if f � 1, we can find k so that

f � lkx :

that is to say, an L-function cannot increase more rapidly than any
exponential, or more slowly than any logarithm.

More precisely, an L-function of order n cannot satisfy f � en(x∆)
or 1 ≺ f ≺ (lnx)δ. The first part of this result is easily established; the
second appears to require a more elaborate proof.
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4. Let f and φ be any two L-functions which tend to infinity
with x, and let α be any positive number. Then one of the three
relations

f � φα, f �− φα, f ≺ φα

must hold between f and φ; and the second can hold for at most one
value of α. If the first holds for any α it holds for any smaller α; and
if the last holds for any α it holds for any greater α.

Then there are three possibilities. Either the first relation holds for
every α; then

f � φ∆.

Or the third holds for every α; then

f ≺ φδ.

Or the first holds for some values of α and the third for others; and
then there is a value a of α which divides the two classes of values of α,
and we may write

f = φαf1,

where φ−δ ≺ f1 ≺ φδ. We shall find this result very useful in the sequel.

IV.

SPECIAL PROBLEMS CONNECTED WITH
LOGARITHMICO-EXPONENTIAL SCALES.

1. The functions er(lsx)µ. We have agreed to express the fact that,
however large be α and however small be β, xα has an increase less than
that of ex

β
, by

x∆ ≺ exδ .∗ (1)

∗Such a relation as
x∆1(lx)∆2 ≺ eδ1x

δ2 (lx)−∆3

might at first sight appear to afford more information than (1): but

x∆1(lx)∆2 ≺ x∆′1 , δ1x
δ2(lx)−∆3 � xδ

′
2 ,
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Let us endeavour to find a function f such that

x∆ ≺ f ≺ exδ . (2)

If φ1 � φ2, eφ1 � eφ2 (ii. § 8). Thus (2) will certainly be satisfied if

log x ≺ log f ≺ xδ.

Hence a solution of our problem is given by

f = e(log x)1+δ
.

Similarly we can prove that

f = e(log x)1−δ

satisfies

(log x)∆ ≺ f ≺ xδ.

It will be convenient to write

e0x ≡ l0x ≡ x,

and then we have the relations

e0(l1x)γ ≺ e1(l1x)1−δ ≺ e0(l0x)γ ≺ e1(l1x)1+δ ≺ e1(l0x)γ , (3)

where γ denotes any positive number.∗

Let us now consider the functions

f = er(lsx)µ, f ′ = er′(ls′x)µ
′
,

where µ, µ′ are positive and not equal to 1. If r = r′, f � f ′ or f ≺ f ′

according as s < s′ or s > s′. If s = s′, the same relations hold according as
r > r′ or r < r′. If r = r′ and s = s′, then f � f ′ or f ≺ f ′ according as

where ∆′1, δ′2 are any positive numbers greater than ∆1 and less than δ2 respectively.
Hence our relation really expresses no more than (1).

∗Here δ, as usual, denotes ‘any positive number however small.’ Of course, in
using the index 1− δ, it is tacitly implied that δ < 1.
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µ > µ′ or µ < µ′. Leaving these cases aside, suppose s > s′, s− s′ = σ > 0.
Putting ls′x = y, we obtain

f = er(lσy)µ, f ′ = er′y
µ′ .

If r < r′ it is clear that f ≺ φ. If r > r′, let r − r′ = ρ; then

lrf = (lσy)µ, lrf
′ = lρy

µ′ �− lρy :

if ρ > 1 the symbol �− may be replaced by ∼. If σ > ρ, lrf ≺ lrf
′ and so

f ≺ f ′. If σ < ρ, f � f ′. If σ = ρ, f � f ′ or f ≺ f ′ according as µ > 1 or
µ < 1. Thus

f � f ′ (r − s > r′ − s′), f ≺ f ′ (r − s < r′ − s′),

while if r−s = r′−s′, f � f ′ or f ≺ f ′ according as µ > 1 or µ < 1, µ being
the exponent of the logarithm of higher order which occurs in f or f ′.

From this it follows that

. . . e1(l2x)1−δ ≺ e0(l1x)γ ≡ (lx)γ ≺ e1(l2x)1+δ ≺ e2(l3x)1+δ ≺ . . .

. . . ≺ e2(l2x)1−δ ≺ e1(l1x)1−δ ≺ e0(l0x)γ ≡ xγ ≺ e1(l1x)1+δ ≺ . . .
. . . ≺ e3(l2x)1−δ ≺ e2(l1x)1−δ ≺ e1(l0x)γ ≡ exγ ≺ e2(l1x)1+δ ≺ . . . .

These relations enable us to interpolate to any extent among what we
may call the fundamental logarithmico-exponential orders of infinity, viz.
(lkx)γ , xγ , ekx

γ . Thus

e(lx)1+δ
, ee

(llx)1+δ

, . . . ,

and

ee
(lx)1−δ

, ee
e(llx)1−δ

, . . . ,

are two scales, the first rising from above xγ , the second falling from be-
low exγ , and never overlapping.

These scales, and the analogous scales which can be interpolated between
other pairs of the fundamental logarithmico-exponential orders, possess an-
other interesting property. The two scales written above cover up (to put
it roughly) the whole interval between xγ and exγ, so far as L-functions
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(iii. § 2) are concerned: that is to say, it is impossible that an L-function f
should satisfy

f � er(lrx)1+δ, (every r),

f ≺ er+1(lrx)1−δ, (every r);

and the corresponding pairs of scales lying between (lk+1x)γ and (lkx)γ ,
or between ekx

γ and ek+1x
γ , possess a similar property. This property is

analogous to that possessed (iii. § 3) by the scales (lrx), (erx); viz. that no
L-function f can satisfy f � erx, or 1 ≺ f ≺ lrx, for all values of r. A
little consideration is all that is needed to render this theorem plausible: to
attempt to carry out the details of a formal proof would occupy more space
than we can afford.

2. (i) Compare the rates of increase of

f = (lx)(lx)µ , φ = x(lx)−ν .

These functions are the same as e{(lx)µ llx}, e{(lx)1−ν}. If µ + ν > 1,
f � φ; if µ+ ν < 1, f ≺ φ.

(ii) Compare the rates of increase of

f = xa(lx)b, φ = eA(lx)α(llx)β , (a, A, α > 0).

Here f = e(a lx+b llx). If α < 1, then f � φ; if α > 1, then f ≺ φ. If α = 1,
β < 0, then f � φ; if α = 1, β > 0, then f ≺ φ. If α = 1, β = 0, a > A,
then f � φ; if α = 1, β = 0, a < A, then f ≺ φ. If α = 1, β = 0, a = A,
then f � φ if b > 0 and f ≺ φ if b < 0. Finally if α = 1, β = 0, a = A, b = 0
the two functions are identical.

(iii) Compare the increase of f = xφ/(1+φ), where φ is a function of x
such that φ � 1, with that of xγ.

It is clear that f 4 x, but f � xγ for any value of γ less than unity. For,
if x is large enough, φ > n, where n is any positive integer, and so

f > xn/(1+n).

Again f = xe−lx/(1+φ), and so, if φ ≺ lx, f ≺ x: but if φ � lx, f � x; while
if φ � lx, f ∼ x.
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3. Successive approximations to a logarithmico-exponential
function. Consider such a function as

f =
√
x(lx)2e

√
lx(l2x)2e

√
l2x(l3x)2

.

If we omit one or more of the parts of the expression of f we obtain another
function whose increase differs more or less widely from that of f . The
question arises as to which parts are of the greatest and which of the least
importance; i.e. as to which are the parts whose omission affects the increase
of f most or least fundamentally.

Taking logarithms we find

lf = 1
2 lx+

√
lx(l2x)2e

√
l2x(l3x)2

+ 2l2x, (a)

the three terms being arranged in order of importance. Again

l2f = l2x− l2 + ε, l3f = l3x+ ε,

where (i. § 5) in each of the last equations ε denotes a function (not the same
function) which tends to zero as x → ∞. If we neglect this term in each of
them in turn we deduce the approximations

(1) f = x, (2) f =
√
x.

By neglecting the last term in the equation (a) we obtain the much closer
approximation

(6) f =
√
xe
√
lx(l2x)2e

√
l2x(l3x)2

.

In order to obtain a more complete series of approximations to f we must
replace the equation (a) by a series of approximate equations. Now if

φ =
√
lx(l2x)2e

√
l2x(l3x)2

we have

lφ = 1
2 l2x+

√
l2x(l3x)2 + 2l3x,

l2φ = l3x− l2 + ε, l3φ = l4x+ ε.

Hence we obtain (0) φ = lx, (3) φ =
√
lx, and (5) φ =

√
lxe
√
l2x(l3x)2

as
approximations to the increase of φ: of these, however, the first is valueless,
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inasmuch as it would make φ preponderate over the first term on the right
hand side of (a).

A similar argument, applied to the function e
√
l2x(l3x)2

, leads us to inter-
polate (4) φ =

√
lxe
√
l2x between (3) and (5). We can now, by adopting a

series of approximate forms of the equation (a), deduce a complete system
of closer and closer approximations to the increase of f , viz.

(1) x, (2)
√
x, (3)

√
xe
√
lx, (4)

√
xe
√
lxe
√
l2x

,

(5)
√
xe
√
lxe
√
l2x(l3x)2

, (6)
√
xe
√
lx(l2x)2e

√
l2x(l3x)2

.

This order corresponds exactly to the order of importance of the various
parts of the expression of f .

4. Legitimate and illegitimate forms of approximation to
a logarithmico-exponential function. In applications of this the-
ory, such as occur, for instance, in the theory of integral functions, we are
continually meeting such equations as

f = (1 + ε)ex
α
, f = e(1+ε)xα , f = ex

α+ε
, (α > 0). (1)

It is important to have clear ideas as to the degree of accuracy of such
representations of f . The simplest method is to take logarithms repeatedly,
as in § 3 above.

In the first example the term ε does not affect the increase of f : we have
f ∼ exα. This is not true in the second; but lf ∼ xα, so that the term ε
does not affect the increase of lf ; while in the third this is not true, though
llf ∼ α. Of the three formulae the first gives the most, and the last the least,
information as to the increase of f (see also vii. § 3).

Such a formula as
f = xe(1+ε)xα (2)

would not be a legitimate form of approximation at all. For the factor e(εxα)
which is not completely specified may well be far more important than the
explicitly expressed factor x: we might for example have ε = x−β, where
0 < β < α, in which case e(εxα) is more important than any power of x. Thus
(2) does not really convey more information than the second equation (1),
and to use it would involve a logical error similar to that involved in saying
that the sun’s distance is 92,713,600 miles, with a probable error of some
100,000 miles.
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5. Attempts to represent orders of infinity by symbols. It
is natural to try to devise some simple method of representing orders of
infinity by symbols which can be manipulated according to laws resembling
as far as possible those of ordinary algebra. Thus Thomae∗ has proposed to
represent the order of infinity of f = xα(lx)α1(l2x)α2 . . . by

Of = α+ α1l1 + α2l2 + . . . ,†

where the symbols l1, l2, . . . are to be regarded as new units. It is clear
that these units cannot, in relation to one another, obey the Axiom of
Archimedes:‡ however great n, nl2 cannot be as great as l1, nor nl1 as
great as 1.

The consideration of a few simple cases is enough to show that any such
notation, if it is to be of any use, must obey the following laws:

(i) iff < φ, O(f + φ) = Of ;

(ii) O(fφ) = Of +Oφ;

(iii) O{f(φ)} = Of ×Oφ.

And Pincherle§ has pointed out that these laws are in any case incon-
sistent with the maintenance of the laws of algebra in their entirety. Thus
if

Ox = 1, O lx = λ,

we have, by (iii), O llx = λ2, and by (iii) and (ii),

O l(x lx) = λ(1 + λ) = λ+ λ2;

and on the other hand, by (i),

O l(x lx) = O(lx+ llx) = λ.

∗Elementare Theorie der analytischen Funktionen, S. 112.
†The reader will not confuse this use of the symbol O (which does not extend

beyond this paragraph) with that explained in i. § 5.
‡‘If x > y > 0, we can find an integer n such that ny > x.’
§l.c. (see p. 18 above).
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Pincherle has suggested another system of notation; but the best yet
formulated is Borel’s.∗ Borel preserves the three laws (i), (ii), (iii), the
commutative law of addition, and the associative law of multiplication. But
multiplication is no longer commutative, and only distributive on one side.†

He would denote the orders of

exxn, xn(lx)p, e2x, ex
2
, ee

x
, e

√
lx, 1

2x,

by

ω + n, n+
p

ω
, 2 · ω, ω · 2, ω2, ω · 1

2
· 1

ω
,

1

ω
· 1

2
· ω.

But little application, however, has yet been found for any such system of

notation; and the whole matter appears to be rather of the nature of a

mathematical curiosity.

V.

FUNCTIONS WHICH DO NOT CONFORM TO ANY
LOGARITHMICO-EXPONENTIAL SCALE.

1. We saw in i. (§ 2) that, given two increasing functions φ and ψ
(φ � ψ), we can always construct an increasing function f which is, for
an infinity of values of x increasing beyond all limit, of the order of φ,
and for another infinity of values of x of the order of ψ. The actual
construction of such functions by means of explicit formulae we left till
later. We shall now consider the matter more in detail, with special
reference to the case in which φ and ψ are L-functions.

We shall say that f is an irregularly increasing function (fonction à
croissance irrégulière) if we can find two L-functions φ and ψ (φ � ψ)
such that

f > φ (x = x1, x2, . . . ), f 6 ψ (x = x′1, x
′
2, . . . ),

∗Leçons sur les séries à termes positifs, pp. 35 et seq.; for further information
see his recently published Leçons sur la théorie de la croissance, pp. 14 et seq.

†(a+ b)c = ac+ bc, but in general a(b+ c) 6= ab+ ac.
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x1, x2, . . . and x′1, x′2, . . . being any two indefinitely increasing se-
quences of values of x. We shall also say that ‘the increase of f is
irregular’ and that ‘the logarithmico-exponential scales are inapplicable
to f .’

The phrase ‘fonction à croissance irrégulière’ has been defined by various
writers in various senses. Borel∗ originally defined f to be à croissance
régulière if

ex
α−δ

< f < ex
α+δ

, (x > x0),

or in other words if llf ∼ αlx or llf �− lx.
This definition was of course designed to meet the particular needs of the

theory of integral functions: and has been made more precise by Boutroux
and Lindelöf,† who use inequalities of the form

ex
α(lx)α1 ...(lkx)αk−δ < f < ex

α(lx)α1 ...(lkx)αk+δ
.

All functions which are not à croissance régulière for these writers are

included in our class of irregularly increasing functions.

2. The logarithmico-exponential scales may fail to give a complete
account of the increase of a function in two different ways. The func-
tion may be of irregular increase, as explained above, and the scales
inapplicable: on the other hand they may be, not inapplicable, but
insufficient (en défaut). That is to say, although the increase of the
function does not oscillate from that of one L-function to that of an-
other, there may be no L-function capable of measuring it. That such
functions exist follows at once from the general theorems of ii. Thus
we can define a function which tends to infinity more rapidly than
any erx, or more slowly than any lrx: and the increase of such a func-
tion is more rapid or slower than that of any L-function (iii. § 2). Or
again, we can (ii. § 6) define a function whose increase is greater than
that of er(lrx)1+δ (any r) and less than that of er+1(lrx)1−δ (any r);

∗Leçons sur les fonctions entières, p. 107.
†Boutroux, Acta Mathematica, t. 28, p. 97; Lindelöf, Acta Societatis Fennicae,

t. 31, p. 1. See also Blumenthal, Principes de la théorie des fonctions entières
d’ordre infini.
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and the increase of such a function (iv. § 1) cannot be equal to that of
any L-function.

We shall now discuss some actual examples of functions for which
the logarithmico-exponential scales are inapplicable or insufficient.

3. Irregularly increasing functions. Functions whose increase
is irregular may be constructed in a variety of ways.

(i) Pringsheim∗ has used, in connection with the theory of the conver-
gence of series, functions of an integral variable n whose increase is irregular.
A simple example of such a function is

f(n) = 10[(log10 n)1/τ ]τ , (τ > 1),

where [x] denotes the integral part of x. It is easily proved, for instance,
when τ = 2, that the increase of f(n) varies between that of n and that of

n · 101−2
√

log10 n. We shall not do more than mention functions of this type.
They are defined, most naturally, as functions of an integral variable n: if
we extend the definition to the continuous variable, the resulting function
is discontinuous. The definition can of course be modified so as to give a
continuous function of x with substantially the same properties; but it is not
easy to effect this by a simple, natural, and explicit formula.

(ii) A more natural type of function is given by

f = φ cos2 θ + ψ sin2 θ,

where φ, ψ, θ are increasing L-functions. We have to consider what condi-
tions φ, ψ, θ must satisfy in order that f may increase steadily with x. That
its increase oscillates between that of φ and that of ψ is obvious.

Differentiating,

f ′ = φ′ cos2 θ + ψ′ sin2 θ + 2(ψ − φ)θ′ cos θ sin θ.

Suppose φ � ψ: and let us assume that (as will be proved in the next
chapter) relations between L-functions involving the symbols �, etc. may

∗See Math. Annalen, Bd. 35, S. 347 et seq. and Münchener Sitzungsberichte,
Bd. 26, S. 605 et seq.
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be differentiated and integrated. The condition that f ′ should always be
positive is φ′ψ′ � (φ − ψ)2θ′2 or φ′ψ′ � φ2θ′2. A fortiori, since φ′ � ψ′, we
must have φ′ � φθ′, or log φ � θ. Thus f is certainly monotonic if

φ � ψ, log φ � θ, ψ′ � φ2θ′2/φ′.

If, e.g., θ = x, we require log φ � x, which is satisfied, for example, if
φ = xαex

ρ
(ρ > 1). It is convenient to write a + ρ − 1 for α. Then, since

φ′ ∼ ρxα+ρ−1ex
ρ
, we must have ψ′ � xaexρ ; and so

ψ �
∫ x

taet
ρ
dt =

1

ρ

∫ x

ta−ρ+1 d

dt
(et

ρ
) dt ∼ 1

ρ
xa−ρ+1ex

ρ
,

as is easily seen on integrating by parts. Thus we may take ψ = xβex
ρ
,

where α− 2ρ+ 2 < β < α. Changing our notation a little we see that

f = (xγ+δ cos2 x+ xγ−δ sin2 x)ex
ρ

is monotonic if 0 < δ < ρ − 1; and the increase of f obviously oscillates
between that of xγ+δex

ρ
and that of xγ−δex

ρ
. Similarly it may be shown

that
f = (eµx cos2 x+ eνx sin2 x)ee

x

is monotonic if ν < µ < ν + 2;∗ and again the increase of f is irregular.

4. Irregularly increasing functions (continued). We shall now
consider two more general and more important methods for the con-
struction of irregularly increasing functions.

(iii) Borel† has shown how, by means of power series, we may define
functions which increase steadily with x, while their increase oscillates
to an arbitrary extent.

Let
φ(x) =

∑
anx

n, ψ(x) =
∑

bnx
n

∗Cf. Messenger of Mathematics, vol. 31, p. 1.
†See Borel, Leçons sur les fonctions entières, pp. 120 et seq.; Leçons sur les

séries à termes positifs, pp. 32 et seq. Borel considers the cases only in which
ψ = ex, φ = ex

2

or ee
x

; but his method is obviously of general application. The
proof here given is however more general and much simpler.
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be two integral functions of x with positive coefficients; suppose also
φ � ψ. The increase of φ and ψ may be as large as we like (ii. § 4);
but in each case it must be greater than that of any power of x.

Then we can define a function

f(x) =
∑

cnx
n,

where every cn is equal either to an or to bn, in such a way that, for an
infinity of values xν whose limit is infinity, we have f ∼ φ, and for a
similar infinity of values x′ν we have f ∼ ψ.∗

Let (ην) be a sequence of decreasing positive numbers whose limit
is zero. Take a positive number x0 such that φ(x0) > 1, ψ(x0) > 1,
and a number x1 greater than x0. When x1 is fixed we can choose n1

so that
∞∑
n1

anx
n
1 <

1
3η1,

∞∑
n1

bnx
n
1 <

1
3η1,

and so, if cn is either of an, bn (however the selection may be made for
different values of n),

∞∑
n1

cnx
n
1 <

∞∑
n1

(an + bn)xn1 <
2
3η1.

For 0 6 n < n1 we take cn = an. Then

|f(x1)− φ(x1)| <
∞∑
n1

(an + cn)xn1 < η1,

and so, since φ(x1) > 1, ∣∣∣∣f(x1)

φ(x1)
− 1

∣∣∣∣ < η1. (1)

∗By ‘f ∼ φ for an infinity of values xν ’ we mean of course that f/φ → 1 as
x→∞ through this particular sequence of values.
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Now let x2 be a number greater than x1; we can suppose x2 chosen
so that( n1−1∑

0

anx
n
2

)/
ψ(x2) < 1

5η2,

( n1−1∑
0

bnx
n
2

)/
ψ(x2) < 1

5η2.

When x2 is fixed we can choose n2 (n2 > n1) so that

∞∑
n2

anx
n
2 <

1
5η2,

∞∑
n2

bnx
n
2 <

1
5η2.

For n1 6 n < n2 we take cn = bn. And, however cn be chosen for
n > n2, we have

∞∑
n2

cnx
n
2 <

∞∑
n2

(an + bn)xn2 <
2
5η2.

Also

|f(x2)− ψ(x2)| <
n1−1∑

0

anx
n
2 +

n1−1∑
0

bnx
n
2 +

∞∑
n2

cnx
n
2 +

∞∑
n2

bnx
n
2

< 2
5η2ψ(x2) + 3

5η2 < η2ψ(x2),

and so ∣∣∣∣f(x2)

ψ(x2)
− 1

∣∣∣∣ < η2. (2)

It is plain that, by a repetition of this process, we can find a sequence
x1, x2, x3, . . . whose limit is infinity, so that∣∣∣∣f(x3)

φ(x3)
− 1

∣∣∣∣ < η3 (3),

∣∣∣∣f(x4)

ψ(x4)
− 1

∣∣∣∣ < η4 (4), . . . ;

and our conclusion is thus established. Incidentally we may remark
that not only f itself, but all its derivatives also, are increasing and
continuous.
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It is clear that, if we were given any number of integral functions
φ1, φ2, . . . , φk, with positive coefficients, we could define f so that
f/φs → 1, as x→∞ through a suitably chosen sequence of values, for
each of the functions φs.

(iv) Power series with gaps. There is another method of construct-
ing irregularly increasing functions by means of power series which, though
less general theoretically than that explained above, is in some ways more
interesting, inasmuch as the functions to which it leads us are of a far sim-
pler and more natural type. We shall confine ourselves here to explaining
in general terms the general principle of the method and indicating a few
simple examples.∗

Let

φ(x) =
∑

anx
n (1)

be an integral function with positive coefficients: suppose, to fix our ideas,
that the coefficients decrease steadily as n increases. Suppose also that, for
a particular value of x,

$(x) = aνx
ν

is the greatest term of the series. In general one term will be the greatest,
but for certain particular values of x, say ξ1, ξ2, . . . , two consecutive terms
will be equal.†

As x increases, the index ν of $(x) increases, and tends to ∞ with n: it
thus defines a function ν(x) such that

ν(x) = i, (ξi < x < ξi+1).

At the point of discontinuity ξi, where ν(x) jumps from i − 1 to i, we may
assign to it the value i. When ν is thus defined for all values of x, or
$(x) defines a function of x which tends continuously and steadily to ∞
with x.

∗For fuller details see Hardy, Proc. Lond. Math. Soc., vol. 2, pp. 332 et seq.;
Messenger of Mathematics, vol. 39, p. 28; Borel, Rendiconti del Circolo Matematico
di Palermo, t. 23, p. 320; Leçons sur la théorie de la croissance, pp. 111 et seq.;
Blumenthal, Principes de la théorie des fonctions entières d’ordre infini, pp. 5 et seq.

†We leave aside the possibility, which obviously applies only to particular cases,
of more than two terms being equal.



LOGARITHMICO-EXPONENTIAL SCALES. 42

The increase of φ is obviously at least as great as that of $; it may
be expected to be greater: but it is, in ordinary cases, not so very much
greater—the increase of $ gives a very fair approximation to that of φ.
Thus, if φ(x) = ex, an = 1/n!, and ξi = i. And for i < x < i+ 1 we have

ei < φ < ei+1, (1− εi)
ei√
2πi

< $ < (1 + εi)
ei+1

√
2πi

.∗

Thus φ � $, but log φ ∼ log$: the difference between the increases of φ
and $ is small compared with the increases themselves.

Now let

f(x) =
∑

aχ(n)x
χ(n), (2)

where χ(n) � n: and let p(x) be the function related to f as $(x) is to φ.
The laws of increase of $(x) and of p(x) may be expected to be very much
the same, for p(x) is defined by a selection from some of the terms from all
of which $(x) was selected. The increase of f(x) clearly cannot be greater,
and may be expected to be less, than that of φ(x): but it cannot be less
than that of p(x). Hence we may expect relations of the type

p � $ ≺ f ≺ φ.†

Also it is clear that, the more rapidly we suppose χ(n) to increase, the lower
in the gap between $ and φ will f sink, and that, if we suppose χ to increase
with sufficient rapidity, we may expect to find $ � f , so that the increase
of f is completely dominated by that of one (variable) term.

We then shall have

f(x) � aN(x)x
N(x),

where N(x) is a function of x which assumes successively each of a series of
integral values Ni, so that

N(x) = Ni, (xi 6 x < xi+1).‡

But, as x increases from xi to xi+1, the order of aNix
Ni , considered as a

function of x, may vary considerably, since Ni, though depending on the

∗The second pair of inequalities are an immediate consequence of Stirling’s
theorem, that i! ∼ ii+ 1

2 e−i
√

2π.
†We must have p 4 $, p 4 f , $ 4 φ, f 4 φ.
‡Ni, xi are, of course, not the same as νi, ξi above.
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interval (xi, xi+1), does not depend on the particular position of x in that
interval. And so it is clear that we are in this way likely to be led to functions
whose increase is irregular in the sense explained in § 1.

Suppose, for example, that an = n−n, so that

φ(x) =
∑(x

n

)n
∼
√

2πx

e
ex/e.∗

Here

ξi = i

(
1 +

1

i

)i+1

∼ ei,

and it is easily shown that $(x) � ex/e.
Now let χ(n) = 2n, so that

f(x) =
∑ x2n

2n2n
=
∑

vn

say. Then vi−1 = vi if x = 2i+1, so that xi = 2i+1 and Ni = 2i for

2i+1 6 x < 2i+2.

For this range of values of x, vi is the greatest term; when x = 2i+2, vi = vi+1.
Further, it is not difficult to show that f(x) � p(x) = vi, the behaviour
of f(x) being dominated by that of its greatest term.†

If we put x = 2i+1+θ, where 0 < θ < 1, we find

f(x) � vi = 2(1+θ)2i = 2αx,

where α = (1 + θ)2−1−θ. This is a maximum when 1 + θ = 1/(log 2), when
it is equal to 1/(e log 2) = .53 . . . . Hence the increase of f(x) oscillates

(roughly) between that of 2.53...x and 2
1
2
x+1.‡

∗See ii. § 3, and the references given in the footnote to p. 13. We might have
taken φ(x) = ex, but our choice of φ(x) leads to the simplest examples.

†We may say roughly that in general f ∼ p—that is to say, f/p→ 1 as x→∞
through any sequence of values not falling inside any of certain intervals surrounding
the values ξi. At a point ξi, f/p is nearly equal to 2.

‡The latter function is multiplied by 2, as there are two equal terms when θ = 0
or 1.



LOGARITHMICO-EXPONENTIAL SCALES. 44

Similar considerations may be applied to the more general series

∑ xa
n

bnan
,

where a is an integer greater than unity. This series is derived from∑
(x/na)n, where α = (log b)/(log a), by taking χ(n) = an. Another

example of an irregularly increasing function defined in a similar manner is

f(x) =
∑ xn

3

(n3)!
,

the increase of which oscillates between the increases of ex/
√
x and

x−
1
2 ex−

9
8
x1/3

.∗

These examples are of course typical of a large class of functions.

Before we leave this subject let us call attention to a point of considerable
interest suggested by the foregoing examples. In forming the logarithmico-
exponential scales we started from the scale x, x2, . . . and then formed the

function
∑ xn

n!
. If we had started, as we equally well might have done, from

the scale x2, x4, x8, . . . (cf. ii. § 1), we should have been led to choose, as a
function transcending this scale, not ex but some such function as

∑ x2n

(2n)!
.

This is one of the irregularly increasing functions of the type just considered.

Had we proceeded thus, and completed the construction of our fundamen-

tal scales on similar lines, our fundamental functions would for the most

part have been among those which do not conform to the logarithmico-

exponential scale, and it would have been the functions of that scale that

would have appeared as irregularly increasing functions.

∗Messenger of Mathematics, vol. 39, p. 28.
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5. Functions which transcend the logarithmico-exponential
scales. We turn our attention now to functions for which the
logarithmico-exponential scales are not inapplicable but insufficient
(§ 2). Of the existence of such functions we are already assured. Thus
a function which assumes the values e1(1), e2(2), . . . , eν(ν), . . . for
x = 1, 2, . . . , ν, . . . certainly has an increase greater than that of
any logarithmico-exponential function. No such function, however, has
as yet made its appearance naturally in analysis; it will be sufficient,
therefore, to mention two examples of such functions which transcend
the logarithmico-exponential scales in quite different manners.

(i) The series ∑ eν(x)

eν(ν)

has obviously, if it converges, an increase greater than that of any eν(x).
Suppose k − 1 6 x < k. Then

ek(x)

ek(k)
< 1,

ek+ν(x)

ek+ν(k + ν)
<

ek+ν(k)

ek+ν(k + ν)
<

ek+ν(k)

ek+ν(k + 1)
.

But, by the Mean Value Theorem,

ek+ν(k + 1) = ek+ν(k) + ek+ν(y)ek+ν−1(y) . . . e2(y)e1(y),

where y is some number between k and k + 1; and so

ek+ν(k + 1) > ek+ν(k)ek+ν−1(k) . . . e1(k).

It follows that the terms of the series

∞∑
ν=k

eν(x)

eν(ν)

are less than those of the series

1 +
∞∑
ν=1

1

e1(k)e2(k) . . . ek+ν−1(k)
,
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which is plainly convergent, and therefore that the original series is con-
vergent; and it is obviously only one of a large class of series possessing
similar properties.

(ii) Let φ(x) be an increasing function such that φ(0) > 0, φ � x. We
can define an increasing function f , which satisfies the equation

ff(x) = φ(x), (1)

as follows.

Draw the curves y = x, y = φ(x) (Fig. 5). Take Q0 arbitrarily on OP0

(see the figure); draw Q0R1 parallel to OX and complete the rectangle Q0Q1.
Join Q0, Q1 by any continuous arc everywhere inclined at an acute angle to
the axes. On this arc take any point Q; draw QP , QR parallel to the axes,
and complete the rectangle QQ′. As Q moves from Q0 to Q1, Q′ moves from
Q1 to Q2, say. As we constructed Q′ from Q, so we can construct Q′′ from Q′:
proceeding thus we define a continuous curve Q0Q1Q2Q3 . . . corresponding
to a continuous and increasing function f(x). Then f(x) satisfies (1). For
if y = f(x) is the ordinate of Q, it is clear that ff(x) is the ordinate of Q′,
which is equal to φ(x), the ordinate of P .

Let us write

f(x) = f1(x), φ(x) = f1f1(x) = f2(x), fφ(x) = φf(x) = f3(x),

and so on, so that Qn is the point fn(0), fn+1(0). Also let ψ be the function
inverse to φ, and write ψ2 for ψψ, and so on. Finally, let the equation ofQ0Q1

be θ(x, y) = 0. Then it is easy to see that the equations of Q2nQ2n+1 and
of Q2n+1Q2n+2 are respectively

θ{ψn(x), ψn(y)} = 0, θ{ψn+1(y), ψn(x)} = 0.

Suppose for example that φ(x) = ex, OQ0 = a < 1, and that Q0Q1 is
the straight line y = a + αx, where α = (1 − a)/a. Then the equations
of Q2nQ2n+1 and of Q2n+1Q2n+2 are

lny = a+ αlnx, lnx = a+ αln+1y,

or

y = en−1{eα(ln−1x)α}, y = en{e−a/α(ln−1x)1/α}.
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y = φ(x)Y

O X

R1

R
R2

y = x

Q0

P0φ(0)

f(0)

P

P1

P ′

P2

Q
Q1

Q′

Q2

Q′′

Q3

Fig. 5.

For simplicity let us take a = 1
2 , α = 1. Then the equations of Q2nQ2n+1

and of Q2n+1Q2n+2 are respectively

y = en−1{
√
e(ln−1x)} = en−2{(ln−2x)

√
e} = λn(x),

y = en{(ln−1x)/
√
e} = en−1{(ln−2x)1/

√
e} = µn(x),

say. Now (iv. § 1)

xγ ≺ λ3 ≺ . . . ≺ λn ≺ . . . ≺ µn ≺ . . . ≺ µ3 ≺ ex
γ

and a function f , such that λn ≺ f ≺ µn for all values of n, transcends the
logarithmico-exponential scales. But f clearly satisfies these relations, and
so its increase is incapable of exact measurement by these scales.

It is easily verified that λnλnx ≺ ex and µnµnx � ex for all values of n.
Hence it is clear a priori that any increasing solution of (1) must satisfy
λn ≺ f ≺ µn.

This kind of ‘graphical’ method may also be employed to define functions
whose increase, like that of the function considered under (i) above, is slower
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than that of any logarithm or more rapid than that of any exponential. It
can be employed, for example, to solve the equation

φ(2x) = 2φ(x);

and it can be proved that the increase of a function such that φ(2x) � φ(x)

is slower than that of any logarithm (vii. § 3).

6. The importance of the logarithmico-exponential scales.
As we have seen in the earlier paragraphs of this section, it is possi-
ble, in a variety of ways, to construct functions whose increase cannot
be measured by any L-function. It is none the less true that no one
yet has succeeded in defining a mode of increase genuinely indepen-
dent of all logarithmico-exponential modes. Our irregularly increasing
functions oscillate, according to a logarithmico-exponential law of oscil-
lation, between two logarithmico-exponential functions; the functions
of § 5 were constructed expressly to fill certain gaps in the logarithmico-
exponential scales. No function has yet presented itself in analysis the
laws of whose increase, in so far as they can be stated at all, cannot be
stated, so to say, in logarithmico-exponential terms.

It would be natural to expect that the arithmetical functions which
occur in the theory of the distribution of primes might give rise to
genuinely new modes of increase. But, so far as analysis has gone, the
evidence is the other way.

Thus if we denote by $(x) the number of prime numbers less than x, it
is known that

$(x) ∼ x

log x
.

More precisely

$(x) =

∫ x

2

dt

log t
+ ρ(x) = Li(x) + ρ(x),

where |ρ(x)| ≺ x(log x)−∆. The precise order of ρ(x) has not yet been

determined, but there is reason to anticipate that ρ(x) 4
√
x/(log x).
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VI.

DIFFERENTIATION AND INTEGRATION.

1. Integration. It is important to know when relations of the
types f(x) � φ(x), etc., can be differentiated or integrated. The results
are very much what might be expected from analogy with similar results
in other branches of analysis, and may therefore be discussed somewhat
summarily. For brevity we denote∫ x

a
f(t) dt,

∫ x

a
φ(t) dt

(where a is a constant) by F (x) and Φ(x). And we suppose for the
moment that f and φ are positive for x > a.

It may be well to repeat (cf. i. § 4) that f and φ are always supposed
to be (at any rate for x > x0) positive, continuous, and monotonic,
unless the contrary is stated or clearly implied. Some of our conclusions
are valid under more general conditions; but the case thus defined, and
the corresponding case in which f or φ or both of them are negative,
are the only cases of importance.

Lemma. If Φ � 1, and f > Hφ for x > x0, then x1 can be found
so that F > (H − δ)Φ for x > x1: similarly f < hφ for x > x0 involves
F < (h+ δ)Φ for x > x1.

For if f > Hφ for x > x0, we have

F =

∫ x

a
f dt >

∫ x0

a
f dt+H

∫ x

x0

φ dt > HΦ +

∫ x0

a
f dt−H

∫ x0

a
φ dt,

and if we choose x1 so that(∫ x0

a
f dt+H

∫ x0

a
φ dt

)/
Φ < ε

for x > x1, as we certainly can if Φ � 1, the result follows. Similarly in
the other case. From this lemma we can at once deduce the following
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Theorem. Any one of the relations

f � φ, f ≺ φ, f � φ, f �− φ, f ∼ φ

involves the corresponding one of the relations

F � Φ, F ≺ Φ, F � Φ, F �− Φ, F ∼ Φ

if either F � 1 or Φ � 1.

To this we may add: if both

∫ ∞
f dt,

∫ ∞
φ dt are convergent, then

f � φ, f ≺ φ, f � φ, f �− φ, f ∼ φ involve corresponding relations
between

F =

∫ ∞
x

f dt, Φ =

∫ ∞
x

φ dt.

The proof we may leave to the reader. These results have been
stated primarily for the case in which f and φ are positive; but there
is no difficulty in extending them to the case in which either function
or both are negative.

2. Differentiation. It follows from § 1 that f � φ involves
f ′ � φ′ if f � 1 or f ≺ 1 and if any one of the relations expressed by
�, ≺, �, �−, ∼ holds between f ′ and φ′.

In interpreting this statement regard must be paid to the conventions laid
down in i. § 4. Thus if f � φ � 1, f ′ and φ′ are positive; and f ′ � φ′. But
if f � 1 � φ, φ is a decreasing function and φ′ < 0. In this case f ′ � −φ′,
a relation which we have agreed to denote by f ′ � φ′. If 1 � f � φ both
f ′ and φ′ are negative: the relation −f ′ ≺ −φ′ would involve

−
∫ ∞
x

f ′ dt ≺ −
∫ ∞
x

φ′ dt

or f ≺ φ, and is therefore impossible; similarly for −f ′ � −φ′; so we must

have −f ′ � −φ′, a relation which we have agreed also to denote by f ′ � φ′.
The case in which f � 1 is exceptional; any one of the relations f ′ � φ′, etc.

may then hold. Thus if f = 1 + e−x, f ′ = 1/x, we have f � φ, f ′ ≺ φ′. The
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fact is that in this case f , regarded as the integral of f ′, is dominated by the

constant of integration.

Similar results hold, of course, for the relations f ≺ φ, etc., with
similar exceptions. With regard to all of them it is to be observed that
the assumption that one of the relations holds between f ′ and φ′ is
essential. We can never infer that one of them holds. We cannot even
infer that f ′ or φ′ is a steadily increasing or decreasing function at all.
Thus if f = ex, φ = ex+sin ex, we have f ′ = ex and φ′ = ex(1+cos ex).
Thus f and φ increase steadily and f ∼ φ, f ′ ∼ f ; but φ′ does not tend
to infinity (vanishing for an infinity of values of x). Again if

φ = ex(
√

2 + sin x) + 1
2x

2,

we have
φ′ = ex(

√
2 + sin x+ cosx) + x

and φ � ex, while φ′ oscillates between the orders of ex and x. It is
possible, though less easy, to obtain examples of this character in which
φ′ also is monotonic.

3. Differentiation of L-functions. If f and φ are L-functions,
so are f ′ and φ′, and one of the relations f ′ � φ′, f ′ � φ′, f ′ ≺ φ′

certainly holds (iii. § 2). Thus in this case both differentiation and inte-
gration are always legitimate∗—this statement, however, being subject
to certain exceptions in the cases in which f � 1 or φ � 1.

In what follows we shall suppose that all the functions concerned
are L-functions, or at any rate resemble L-functions in so far that one
of the relations f � φ, f �− φ, f ≺ φ is bound to hold between any pair
of functions, and that differentiation and integration are permissible.†

1. If f is an increasing function, and f ′ � f , then f � e∆x. If
f ′ ≺ f , then f ≺ eδx. Similarly if f is a decreasing function, f ′ � f
and f ′ ≺ f involve f ≺ e−∆x and f � e−δx respectively. If f ′�− f , then

∗A tacit assumption to this effect underlies much of Du Bois-Reymond’s work.
†The results which follow are all in substance due to Du Bois-Reymond.
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eδx ≺ f ≺ e∆x or e−∆x ≺ f ≺ e−δx, and we can find a number µ such
that f = eµxf1, where e−δx ≺ f1 ≺ eδx.

The proofs of these assertions are almost obvious. Thus if f is an
increasing function, and f ′ � f , we have

f ′/f � 1, log f � x,

and so log f > ∆x for x > x0, i.e. f > e∆x, or, what is the same thing,
f � e∆x. The last clause of the theorem follows at once from iii. § 4.

2. More generally, if v is any increasing function, f ′/f � v′/v
involves f � v∆ or f ≺ v−∆, according as f is an increasing or a
decreasing function; and f ′/f ≺ v′/v involves f ≺ vδ or f � v−δ. And
f ′/f �− v′/v involves vδ ≺ f ≺ v∆ or v−∆ ≺ f ≺ v−δ; and then we can
find a number µ such that f = vµf1, where v−δ ≺ f1 ≺ vδ.

When f is an increasing function we shall call f ′/f the type t of f :∗

it being understood that t may be replaced by any simpler function τ
such that t�−τ . The type of a decreasing function f we define to be the
same as that of the increasing function 1/f . The following table shews
the types of some standard functions:

Function 1 llx lx xα ex eαx
β

e2x e3x . . .

Type 0
1

x lx llx

1

x lx

1

x
1 xβ−1 ex e2x ex . . .

If f � φ, then f ′/f < φ′/φ. By making the increase of f large enough
we can make the increase of t = f ′/f as large as we please. The reader will
find it instructive to write out formal proofs of these propositions, and also
of the following.

1. As the increase of f becomes smaller and smaller, f ′/f tends to
zero more and more rapidly, but, so long as f →∞ at all, we cannot have

f ′/f ≺ φ,
∫ ∞

φdx convergent .

∗Du Bois-Reymond calls f/f ′ the type; the notation here adopted seems slightly
more convenient.
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On the other hand, if the last integral is divergent we can find f so that
f � 1, f ′/f ≺ φ.

2. Although we can find f so that f ′/f shall have an increase larger
than that of any given function of x, we cannot have

f ′/f � φ(f),

∫ ∞ dx

xφ(x)
convergent .

On the other hand, if the last integral is divergent we can find f so that
f ′/f � φ(f).

[Thus we cannot find a function f which tends to infinity so slowly
that f ′/f ≺ 1/xα (α > 1). But we can find f so that f ′/f ≺ 1/x lx llx
(e.g. f = l3x). We cannot find f so that f ′/f � fα or f ′ � f1+α (α > 0).
But we can find f so that f ′/f � lf (e.g. f = e3x).]

3. If f � ekx for all values of k, f ′/f satisfies the same condition, and

f ′ � f lf l2f . . . lkf.

He will also find it profitable to formulate corresponding theorems about

functions of a positive variable x which tends to zero.

4. Successive differentiation. Du Bois-Reymond has given the
following general theorem, which enables us to write down the increase
of any derivative of any logarithmico-exponential function. We write t
for f ′/f , as in the last section, and we assume that no derivative f (n)

satisfies f (n) �− 1: if this should be the case the results of the theorem,
so far as the derivatives f (n+1), . . . are concerned, cease to be true.

Theorem. (i) If t � 1/x (so that f � x∆) then

f �− f ′/t�− f ′′/t2 �− f ′′′/t3 . . .�− f (n)/tn . . . .

(ii) If t ≺ 1/x (so that f ≺ xδ) then

f �− f ′/t�− xf ′′/t�− x2f ′′′/t . . .�− xn−1f (n)/t . . . .
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(iii) If t �− 1/x (so that f = xµf1, where x−δ ≺ f1 ≺ xδ), then if
µ is not integral either set of formulae is valid. But if µ is integral

f �− xf ′ �− x2f ′′ . . .�− xµf (µ) �− xµf (µ+1)/t1 �− xµ+1f (µ+2)/t1 . . . ,

where t1 is the type of f1.

(i) If t � 1/x, 1/t ≺ x and so t′/t2 ≺ 1; hence t′/t ≺ t = f ′/f or

ft′ ≺ f ′t.

Differentiating the relation f ′ �− ft, and using the relation just es-
tablished, we obtain

f ′′ �− f ′t+ ft′ �− f ′t.

Thus the type of f ′ is the same as that of f ; accordingly the argu-
ment may be repeated and the first part of the theorem follows.

(ii) If t ≺ 1/x, xf ′ ≺ f and so

xf ′′ + f ′ ≺ f ′.

But this cannot possibly be the case unless xf ′′�−f ′. Differentiating
again we infer

xf ′′′ + 2f ′′ ≺ f ′′,

whence xf ′′′ �− f ′′; and so on generally.∗ Thus the second part follows.

(iii) If t � 1/x, f = xµf1 and t1, the type of f1, satisfies t1 ≺ 1/x.
Then

f ′ = µxµ−1f1 + xµf ′1 �− xµ−1f1(µ+ xt1)�− xµ−1f1;

Similarly f ′′ �− xµ−2f1 and so on. We can proceed indefinitely in this
way unless µ is integral: in this case we find f (µ) � f1, and from this
point we proceed as in case (ii).

Examples. (i) If f = e
√
x, then t = 1/

√
x � 1/x, and f (n)�−e

√
x/(
√
x)n.

If f = e(log x)2
, then t = (log x)/x � 1/x, and f (n) �− e(log x)2

(log x)n/xn.

∗More precisely xf ′′ ∼ −f ′, xf ′′′ ∼ −2f ′′, and so on.
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(ii) If f = (log x)m, then t = 1/(x log x) ≺ 1/x, and

f (n) �− tx−(n−1)f �− (log x)m−1/xn.

(iii) If f = x2 llx, t�− 1/x. Here

f ′ �− x llx, f ′′ �− llx, f ′′′ �− 1/x lx, f ′′′′ �− 1/x2 lx, . . . .

(iv) The results of the theorem, in the first two cases, can be stated
more precisely as follows:

If t � 1/x, then
f (n) ∼ (f ′/f)nf.

If t ≺ 1/x, then

f (n) ∼ (−1)n−1(n− 1)!x−(n−1)f ′.

If f is a positive increasing function, then if t � 1/x all the derivatives are

ultimately positive, while if t ≺ 1/x they are alternately ultimately positive

and ultimately negative.

5. Functions of an integral variable. The theorems for func-
tions of an integral variable n, corresponding to those of §§ 1–4, involve
sums

An = a1 + a2 + · · ·+ an

in place of integrals, and differences

∆an = an − an+1

instead of differential coefficients. The reader will be able to formulate
and to prove for himself the theorems which correspond to those of § 1.
Thus

‘an � bn, an ≺ bn, an � bn, an �− bn, an ∼ bn involve
the corresponding equations for An, Bn, if one at least of
An, Bn tends to infinity with n’

and so on.∗ Considerations of space forbid that we should go further
into the subject here.

∗This is of course the well known theorem of Cauchy and Stolz: see Bromwich,
Infinite Series, p. 377.
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VII.

SOME DEVELOPMENTS OF DU BOIS-REYMOND’S
INFINITÄRCALCÜL.

1. We shall conclude our account of the general theory by a brief
sketch of some interesting results due in the main to Du Bois-Reymond.
For further details we must refer to his memoirs catalogued in the
Bibliographical Appendix.

The functions
f(x+ a)

f(x)
,
f(ax)

f(x)
, etc.

It is often necessary to obtain approximations to such functions as

f(x+ a)/f(x),

where a is itself a function of x, which for simplicity we suppose positive,
and which may tend to infinity with x. In this connection Du Bois-
Reymond∗ has proved a whole series of theorems: it will be sufficient
for our present purpose to give a few specimens of his results. In what
follows it will be assumed throughout that all the functions dealt with
are L-functions, or at any rate such that any pair of them satisfy one
of the relations f � φ, f �− φ, f ≺ φ, and that such relations may be
differentiated or integrated. This being so we have

f(x+ a)

f(x)
= elf (x+α)−lf (x) = e

{
a
f ′(x+ α)

f(x+ α)

}
,

where 0 < α < a. This expression has certainly the limit unity if f ′ 4 f
and a ≺ 1. Hence

f(x+ a) ∼ f(x) (1)

if a ≺ 1 and e−∆x ≺ f ≺ e∆x. If f ′/f ≺ 1, i.e. if e−δx ≺ f ≺ eδx,
the relation (1) holds for a ≺ f/f ′: it certainly holds, for instance, if
a = x{f(x)}−µ, where µ > 0, since x/fµ ≺ f/f ′ whenever f � 1.†

∗Math. Annalen, Bd. 8, S. 363 et seq.

†For

∫ ∞
f−1−µf ′ dx is convergent, and so f ′/f1+µ ≺ 1/x.
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If a�− f/f ′ (as e.g. if f = eµxf1, where e−δx ≺ f1 ≺ eδx, and a�− 1),
f(x+ a)/f(x) will tend to a limit different from unity.

Again
f(x+ a)

f(x)
= e

{
a
f ′(x)

f(x)

t(x+ α)

t(x)

}
,

where t = f ′/f . Hence

f(x+ a)

f(x)
= e

{
u
f ′(x)

f(x)

}
(u ∼ a) (2)

in all cases in which t(x + α)/t(x) ∼ 1; as for example if a 4 1,
e−δx ≺ t ≺ eδx, or, what is the same thing, if

a 4 1, e−e
δx

≺ f ≺ ee
δx

.

The reader will find it instructive to write down conditions under
which the equation (2) holds when u�− a is substituted for u ∼ a, and
to consider in what circumstances either relation holds when a � 1.

2. The reader is also recommended to verify some of the following
results:

(i) If 1 ≺ a ≺ x and x−∆ ≺ f ≺ x∆, then f(x+ a)/f(x) ∼ 1.

(ii) If f ≺ x and a ≺ 1/f ′, or if f �− x and a ≺ 1, then f(x+ a)− f(x) ≺ 1.

(iii) If e−δx ≺ f ≺ eδx and a ≺ f ′/f ′′, then

f(x+ a)− f(x) ∼ af ′(x).

The condition a ≺ f ′/f ′′ may be simplified by means of the theorem of
vi. § 4. Thus if t ≺ 1/x (i.e. if f ≺ xδ) it is equivalent to a ≺ x.

(iv) If x−δ ≺ a ≺ xδ, (lx)−∆ ≺ f ≺ (lx)∆, then f(ax)/f(x) ∼ 1.

(v) If e−∆
√
lx ≺ f ≺ e∆

√
lx, then

f{xf(x)}
f(x)

�− 1, e

{
x lf (x)f ′(x)

f(x)

}
�− 1;
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and the limits of the two functions are the same: and if e−δ
√
lx ≺ eδ

√
lx this

limit is unity.

Suppose, e.g. f � 1, and let f(x) = φ(lx); then, if a = f(x),

f(ax)

f(x)
= elφ(lx+la)−lφ(lx) = elaφ

′(lx+la1)/φ(lx+la1),

where 1 < a1 < a. The exponent is

lφ(lx+ la1)
φ′(lx+ la1)

φ(lx+ la1)

lφ(lx)

lφ(lx+ la1)
.

Now a = f(x) ≺ xδ and therefore la1 4 la ≺ lx, and so, by (i),

lφ(lx+ la1) ∼ lφ(lx)

if lφ ≺ x∆ or if f ≺ e(lx)∆
, which is certainly the case. Hence the exponent

is asymptotically equivalent to

lφ(u)φ′(u)/φ(u),

where u = lx + la1. And lφ(φ′/φ) 4 1 if (lφ)2 4 u, i.e. if φ 4 e∆
√
u or

f 4 e∆
√
lx. In this case f(ax)�− f(x); and it is easy to see that if f 4 eδ

√
lx

the symbol �− may be replaced by ∼.

(vi) If f(x) = xφ(x), and e−δ
√
lx ≺ φ ≺ eδ

√
lx, then

f2(x) ≡ ff(x) ∼ xφ2, . . . , fn ∼ xφn, . . . .

The reader will easily prove this by the aid of the preceding results. He

will also find it instructive to calculate the increase of fn when f = e
√
lx and

when f = e(lx)α , where α > 1
2 .

The accuracy of approximations.

3. We have already (iv. §§ 3–4) had occasion to use the notion
of an approximation to the increase of a function, and to distinguish
legitimate and illegitimate forms of approximation. Du Bois-Reymond
has given the following more precise definitions.
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He defines ψ(x, u, u1, . . . ) to be an ‘approximate form’ of y if

y = ψ(x, u, u1, . . . ),

ψ being a known function, and u, u1, . . . unknown functions whose
increase is, however, subject to certain limitations. It is clear that it
is really useless, however, to insert more than one unknown function u
in ψ. The effect of the presence of u is to define a certain stretch within
which the increase of y lies, and the presence of several u’s can effect no
more. We shall therefore consider only approximate forms of the type

y = ψ(x, u). (1)

Thus

ex
u

(u ∼ 1), e(1+u)x (u ≺ 1), x1+uex (u ≺ 1) (2)

are approximate forms of y = xex/lx; the second clearly closer than
the first and the third than the second.

The closeness of an approximation may be measured as follows. The
presence of u in (1) lends a certain degree of indeterminateness to the
increase of y: all that we can say (the increase of u being known to lie
between certain limits) is that y lies in a certain interval

η1 4 y 4 η2.

Now (ii. § 8) we can find an increasing function F so that F (η1) �
F (η2): if F satisfies this condition, any more slowly increasing function
will do so too. The slower the increase of F must be taken, the rougher
the approximation.

The facts may be stated the other way round. Given y, and
a function F , such that 1 ≺ F ≺ x, we can determine an interval
η1 4 y 4 η2 such that F (η1) � F (η2). The slower the increase of F ,
the larger this interval may be taken; if F � x it vanishes, if F � 1 it
may be taken as large as we please. If F = lx it might be (yδ, y∆); if
F = l2x it might be

e(ly)δ , e(ly)∆

,
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and so on. No logarithmico-exponential form of F , however, can give
an interval as large as (log y, ey); a function F such that F (y) � F (ey)
must transcend any logarithmico-exponential scale.

Let us consider the approximations (2) for xex/lx.

(i) If y = ex
u

(u ∼ l), y lies in the interval ex
1−δ

, ex
1+δ

. Since

ll(ex
1−δ

) = (1− δ)lx � ll(ex1+δ
)

we may take F = llx, or even F = (llx)∆: but the increase of F cannot be
taken as large as (lx)δ.

(ii) If y = e(1+u)x (u ≺ 1), y lies in the interval e(1−δ)x, e(1+δ)x. Then

we may take F = (lx)∆, but we cannot take F = e(lx)δ .

(iii) If y = x1+uex we may, as the reader will easily verify, take
F = e(lx)µ , where µ is any number less than unity.

Another example of an approximation is given by the formula

f(x+ a)

f(x)
= e

{
u
f ′(x)

f(x)

}
(u ∼ a).

If, e.g., a is a constant,

l

{
f(x+ a)

f(x)

}
∼ l
{
e

[
f ′(x)

f(x)

]}
,

and the degree of accuracy of the approximation is great enough to be mea-

sured by the function F = lx.

The approximate solution of equations.

4. It is often important to obtain an asymptotic solution of an
equation f(x, y) = 0, i.e. to find a function whose increase gives an
approximation to that of y. No very general methods of procedure can
be given, but the kind of methods which may be pursued are worth
illustrating by a few examples.

(i) Suppose that the equation is

x = yκ(y), (1)
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where y−δ ≺ κ ≺ yδ. If the increase of κ is so slow that κ{yκ(y)} � κ(y)
it is clear that

y � x/κ(y) � x/κ(x) :

and if the increase of κ is slow enough we may have y ∼ x/κ(x).
The conditions

e−∆
√
ly ≺ κ(y) ≺ e∆

√
ly, e−δ

√
ly ≺ κ(y) ≺ eδ

√
ly

are, by the result (v) of § 2, enough to ensure the truth of these hypothe-
ses; and then y = ux/κ(x), where u � 1 (or u ∼ 1) is an approximate
solution of our equation.

Du Bois-Reymond has proved that the more elaborate approximations

y = ux/{κ(x/κ)}, y = uxκ−1/{1+(xκ′/κ)}

have a wider range of validity: and that more elaborate approximations still
may be constructed valid within the range

e−∆(ly)1−δ ≺ κ ≺ e∆(ly)1−δ
.

The more general equation

x = ymκ(y)

can clearly be reduced to the form considered above by writing xm for x
and κm for κ.

In general, if x = φ(y), the more rapid the increase of φ the more
precisely can we determine the increase of y as a function of x. Thus if

x = yey

we have lx = y + ly and

y = lx− ly = lx(1 + u),

where u ∼ ly/lx ∼ llx/lx. This is a solution of a much more precise
kind than those considered above.
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5. The reader will find it instructive to examine the following re-
sults:

(i) Let

x = ye(ly)3/8
.

This is an example of the work of § 4: and

y ∼ xe−(lx)3/8
.

(ii) Let

x = ye(ly)5/8
.

Here

y ∼ xe[−(lx)5/8{1− (lx)−3/8}5/8]

∼ xe{−(lx)5/8 + 5
8(lx)1/4}.

(iii) Let
x = ym(ly)m1(l2y)m2 . . . (lry)mr .

Here
y ∼ mm1/mx1/m(lx)−m1/m . . . (lrx)−mr/m.

(iv) Let

x = ey
2
ly.

Here
y =

√
lx− l3x+ u (u ≺ 1).

(v) As an example of another type, Du Bois-Reymond has considered
the equation

f(x+ y)− f(x) = C,

where C is a positive constant. He finds

y ∼ C/f ′(x) (f(x) � lx),

y = xe{Cu/xf ′(x)} (u ∼ 1, lx � f(x) � llx),

and so on: the forms of the solution when f � lx, f � llx, . . . are excep-
tional.
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(vi) As an example of an approximation pushed to greater lengths let
us take the following result: if

x = y ly,

then

y =
x

lx

{
1 +

llx

lx
+

(llx)2

(lx)2
− llx

(lx)2

}
+ u,

where

u�− x(llx)3

(lx)4
.

6. Here we may bring our account of the general theory to a close.
It is a theory that has found, and is finding, a large and increasing
variety of applications in various branches of mathematics: the nature
of some of these applications the reader may glean from Appendix II.
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APPENDIX II.

A SKETCH OF SOME APPLICATIONS,∗ WITH REFERENCES.

A. Convergence and divergence of series and integrals.

(i) The logarithmic tests. The series
∑
un (un > 0) is convergent

if

un 4 n−1−α

or un 4 (n ln . . . lk−1n)−1(lkn)−1−α,

where α > 0, and divergent if

un 4 n−1

or un < (n ln . . . lkn)−1(lkn)−1.

The integral

∫ ∞
f(x) dx (f > 0) is convergent if

f 4 x−1−α

or f 4 (x lx . . . lk−1x)−1(lkx)−1−α,

where α > 0, and divergent if

f 4 x−1

or f 4 (x lx . . . lkx)−1.

The integral

∫
0
f(x) dx (f > 0) is convergent if

f 4 (1/x)1−α

or f 4 (1/x){l(1/x) . . . lk−1(1/x)}−1{lk(1/x)}−1−α,

∗That is to say of certain regions of mathematical theory in which the notation
and the ideas of the Infinitärcalcül may be used systematically with a great gain in
clearness and simplicity.
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where α > 0, and divergent if

f < 1/x

or f < (1/x){l(1/x) . . . lk(1/x)}−1.

[The first general statement of the ‘logarithmic criteria,’ so far as
series are concerned, appears to have been made by De Morgan: see
his Differential and Integral Calculus, 1839, p. 326. The essentials of
the matter, however, appear in a posthumous memoir of Abel (Œuvres
complètes, t. 2, p. 200; see also t. 1, p. 399). This memoir appears
also to have been first published in 1839. The case of k = 1 had been
dealt with by Cauchy (Exercices de Mathématiques, t. 2, 1827, pp. 221
et seq.). Bertrand appears to have arrived at some or all of De Morgan’s
results independently (see Liouville’s Journal, t. 7, 1842, p. 37) and the
criteria are very commonly attributed to him. The criteria for integrals
do not appear to have been stated generally before Riemann, Inaugural-
Dissertation of 1854 (Werke, S. 229).

The following references may also be useful:

Bonnet, Liouville’s Journal, t. 8, p. 78.

Dini, Sulle serie a termini positivi (Pisa, 1867); also in the Annali
dell’ Univ. Tosc., t. 9, p. 41.

Du Bois-Reymond, Crelle’s Journal, Bd. 76, S. 619.

Pringsheim, Math. Annalen, Bd. 35, S. 347 and Bd. 37, S. 591; also
in the Encyklopädie der Math. Wiss., Bd. 1, Th. 1, S. 77 et seq.

Hobson, Theory of functions of a real variable, p. 406.

Bromwich, Infinite series, pp. 29, 37.

Hardy, Course of pure mathematics, pp. 357 et seq.

Chrystal, Algebra, vol. 2, pp. 109 et seq.]

(ii) General theorems analogous to Du Bois-Reymond’s Theorem
(ii. § 1).

Given any divergent series
∑
un of positive terms, we can find a

function vn such that vn ≺ un and
∑
vn is divergent; i.e. given any

divergent series we can find one more slowly divergent.
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Given any convergent series
∑
un of positive terms we can find vn

so that vn � un and
∑
vn is convergent; i.e. given any convergent series

we can find one more slowly convergent.
Given any function φ(n) tending to infinity, however slowly, we can

find a convergent series
∑
un and a divergent series

∑
vn such that

vn/un = φ(n).
Given an infinite sequence of series, each converging (diverging)

more slowly than its predecessor, we can find a series which converges
(diverges) more slowly than any of them.

[See Abel and Dini, l.c. supra; Hadamard, Acta Mathematica, t. 18,
p. 319 and t. 27, p. 177; Bromwich, Infinite series, p. 40; Littlewood,
Messenger of Mathematics, vol. 39, p. 191.]

There is no function φ(n) such that unφ(n) < 1 is a necessary
condition for the divergence of

∑
un, and no function φ(n) such that

φ(n) � 1 and unφ(n) 4 1 is a necessary condition for the convergence
of
∑
un.

If un is a steadily decreasing function of n, then nun ≺ 1 is a
necessary condition for convergence; but there is no function φ(n) such
that φ(n) � 1 and nφ(n)un ≺ 1 is a necessary condition.

[Pringsheim, Math. Annalen, Bd. 35, S. 343 et seq.; ibid., Bd. 37,
S. 591 et seq.]

If however nun decreases steadily, then n log nun → 0 is a neces-

sary condition; and if nψ(n)un, where nψ(n) � 1 and

∫
dn

nψ(n)
� 1,

decreases steadily, then(
nψ(n)

∫
dn

nψ(n)

)
un → 0

is a necessary condition.

(iii) Special series and integrals possessing peculiarities in respect
to the mode of their convergence or divergence.

For examples of series and integrals which converge or diverge so
slowly as not to answer to any of the logarithmic criteria see Du Bois-
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Reymond, Pringsheim, Borel (l.c. supra), and Blumenthal, Principes
de la théorie des fonctions entières d’ordre infini, ch. 1.

In these cases the logarithmic tests are insufficient (en défaut,
iv. §§ 2, 5). For examples of series and integrals to which the logarith-
mic tests are inapplicable (v. §§ 3, 4) see the writings just mentioned
and also

Thomae: Zeitschrift für Mathematik, Bd. 23, S. 68.
Gilbert: Bulletin des Sciences Mathématiques, t. 12, p. 66.
Goursat: Cours d’Analyse, t. 1, p. 205.
Hardy: Messenger of Mathematics, vol. 31, p. 1; ibid., vol. 31, p. 177;

ibid., vol. 39, p. 28.

B. Asymptotic formulae for finite series and integrals.

A closely connected problem is that of the determination of asymp-
totic formulae for

An = a1 + a2 + · · ·+ an

or for

Φ(x) =

∫ x

a
φ(t) dt,

when the behaviour of an or φ(x) for large values of n or x is known.
A good deal can be accomplished in this direction by means of (i) the
theorem of Cauchy and Stolz, that, if an and bn are positive and
an ∼ Cbn, then An ∼ CBn, (ii) the theorems of vi. and (iii) the
theorem of Maclaurin and Cauchy, that

φ(1) + φ(2) + · · ·+ φ(n)−
∫ n

1
φ(x) dx,

where φ(x) is a positive and decreasing function of x, tends to a limit
as n→∞.

[For (i) see Cauchy, Analyse algébrique, p. 52; Stolz, Math. An-
nalen, Bd. 14, S. 232, or Allgemeine Arithmetik, Bd. 1, S. 173; Jensen,
Tidskrift for Mathematik (5), Bd. 2, S. 81; Bromwich, Infinite series,
p. 378, and Proc. Lond. Math. Soc., ser. 2, vol. 7, p. 101. Proofs of (iii)
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will be found in almost any modern treatise on analysis: e.g., Bromwich,
Infinite series, p. 29; Hardy, Course of pure mathematics, p. 305. An
important extension to slowly oscillating series has been given recently
by Bromwich (Proc. Lond. Math. Soc., ser. 2, vol. 7, p. 327).]

Among the most important results which follow from these theorems
are

1s + 2s + · · ·+ ns ∼ ns+1

s+ 1
(s > −1),

1s + 2s + · · ·+ ns − ns+1

s+ 1
∼ ζ(−s) (−1 < s < 0),

1 +
1

2
+ · · ·+ 1

n
− log n ∼ γ,

1 +
α · β
1 · γ

+
α(α + 1)β(β + 1)

1 · 2 · γ(γ + 1)
+ . . . to n terms,

∼ Γ(γ)

Γ(α) Γ(β)

nα+β−γ

α + β − γ
(α + β > γ),

or ∼ Γ(α + β)

Γ(α) Γ(β)
log n (α + β = γ).

In connection with the last result see Bromwich, Proc. Lond. Math.
Soc., ser. 2, vol. 7, p. 101; in the earlier formulae γ is Euler’s constant
and ζ denotes the ‘Riemann ζ-function.’

The most important of all formulae of this kind is beyond question

log 1 + log 2 + · · ·+ log n− (n+ 1
2) log n+ n ∼ 1

2 log(2π),

which, in the form

n! ∼ nn+ 1
2 e−n

√
2π,

constitutes Stirling’s Theorem. The literature connected with Stirling’s
Theorem and its extensions to the Gamma-function of a non-integral
or complex variable is far too extensive to be summarized here. See
Encykl. der Math. Wiss., Bd. II. (2), S. 165 et seq.; Bromwich, Infinite
series, pp. 461 et seq.
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Another formula of the same kind is

112233 . . . nn ∼ An
1
2n

2+ 1
2n+ 1

12 e−
1
4n

2

,

where A is a constant defined by the equation

logA = 1
12 log 2π + 1

12γ +
1

2π2

∞∑
1

log ν

ν2
.

The properties of this constant have been investigated by Kinke-
lin and Glaisher (Kinkelin, Crelle’s Journal, Bd. 57, S. 122: Glaisher,
Messenger of Mathematics, vol. 6, p. 71; vol. 7, p. 43; vol. 23, p. 145;
vol. 24, p. 1; Quarterly Journal of Mathematics, vol. 26, p. 1: see also
Barnes, ibid., vol. 31, pp. 264 et seq.).

All these results are intimately bound up with the theory of the
general ‘Euler-Maclaurin Sum Formula’

n∑
1

f(n) =

∫ n

f(x) dx+ C + 1
2f(n) +

B1

2!
f ′(n)− B2

4!
f ′′′(n) + . . .

which also possesses an extensive literature (see Schlömilch, Theorie
der Differenzen und Summen; Boole, Finite differences ; Markoff, Dif-
ferenzenrechnung ; Seliwanoff, Differenzenrechnung ; Encykl. der Math.
Wiss., Bd. I. S. 929 et seq.; Bromwich, Infinite series, p. 238 and p. 324;
Barnes, Proc. Lond. Math. Soc., ser. 2, vol. 3, pp. 253 et seq.; where
many further references are given).

A simple example of the use of the general formula is afforded by
the relation

n∑
1

νs − ns+1

s+ 1
− 1

2n
s −

∑
1

(−1)i−1

(
s

2i− 1

)
Bi
2i
ns−2i+1 ∼ ζ(−s).

Here s is positive and not integral, and the summation with respect
to i is continued until we come to a negative power of n.
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C. Formulae involving prime numbers only.

Asymptotic formulae involving functions defined arithmetically, and
particularly functions defined by sums of functions of prime numbers
only, play a most important part in the analytical theory of numbers.
Of these the most important is the formula

Π(n) ∼ n

ln
,

where Π(n) denotes the number of prime numbers less than n.
Similarly it is known that∑

lp ∼ n,
∑ lp

p
∼ ln,

∑ 1

p
∼ lln

(the summation in each case applying to all primes less than n) while
∞∑ 1

p lp
is convergent.

Many more accurate results have been established by recent writers,
particularly Mertens, Hadamard, Von Mangoldt, De la Vallée-Poussin,
and Landau; and the theory has to a considerable extent been freed
from Riemann’s still unproved assumption that all the roots of his Zeta-
function have their real part equal to 1

2 . Thus it has been shown that

Π(n) =

∫ n

2

dx

log x
+O

{
n

(ln)∆

}
,

or, still more accurately,

Π(n) =

∫ n

2

dx

log x
+O{ne−α

√
ln},

where α is a positive constant; but it still remains to be settled whether
(as there is some reason to suppose) the last term can be replaced
by O(

√
n) or even by

O

(√
n

ln

)
.
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[It would carry us too far to give detailed references to the literature
of this exceedingly difficult and fascinating subject. The reader should
consult Landau’s exhaustive Handbuch der Lehre von der Verteilung
der Primzahlen (Teubner, 1909).]

D. The theory of integral functions.

1. The series
∑
cnx

n will converge for all values of x (real or com-
plex), and so define an integral function f(x), if and only if n

√
|cn| → 0,

i.e. if |cn| ≺ e−∆n.

2. The three indices of a function of finite order. The three most
important characters of an integral function f(x) are:

(i) γn = |cn|, the modulus of the nth coefficient;

(ii) αn = |an|, the modulus of the nth (in order of absolute mag-
nitude) zero of f(x);

(iii) M(r), the maximum of |f(x)| on the circle |x| = r. M(r) is
known to be an increasing function of r, and in all cases M(r) � r∆.

A function such that M(r) ≺ er
∆

is called a function of finite order.
We shall confine our remarks to such functions.

The principal problem of the theory of integral functions is the
determination of the relations between the increases of αn, 1/γn,
and M(r). Those which subsist between the two latter functions are
the simplest: when αn is taken into account the theory is complicated
by the ‘Picard case of exception’—the case of functions which (like ex)
have no zeroes, or whose zeroes are scattered abnormally widely over
the plane.

The nature of the results of the general theory may be gathered
from a statement of a few of the simplest of them.

If

n−µ−δ ≺ n
√
γn ≺ n−µ+δ,

i.e. if

l(1/γn) ∼ µn ln,
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we call µ the µ-index. The index may be defined in all cases without
any assumption as to the existence of a limit for {l(1/γn)/(n ln)}; we
confine ourselves to the simplest case.

If

n(1/λ)−δ ≺ αn ≺ n(1/λ)+δ,

we call λ the λ-index ; and if

er
ν−δ
≺M(r) ≺ er

ν+δ

,

we call ν the ν-index : thus

lαn ∼ (ln)/λ, llM(r) ∼ ν lr.

Then µ = 1/ν: and in general λ = ν.

Thus for the function

sin(
√
x)√
x

= 1− x

3!
+
x2

5!
− . . .

we have λ = ν = 1
2 and µ = 2, as the reader will easily verify (using

Stirling’s Theorem to determine µ).

3. Special results. More precise results than these have been ob-
tained in many cases. Thus if

{n(ln)−α1 . . . (lνn)−αν+δ}−1/ρ ≺ n
√
γn ≺ {n(ln)−α1 . . . (lνn)−αν−δ}−1/ρ,

then

e{rρ(lr)α1 . . . (lνr)
αν−δ} ≺M(r) ≺ e{rρ(lr)α1 . . . (lνr)

αν+δ},

and conversely.
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As examples of still more accurate, but more special results, we may
quote the following:

∑ xn

nαn
∼
√

2π

eα
x1/2αe(α/e)x1/α

,∑ xn

(n!)α
∼ 1√

α
(2π)(1−α)/2x(1−α)/2αeαx

1/α

,∑ xn

Γ(αn+ 1)
∼ (1/α)ex

1/α

,

∑
e−n

p

xn ∼

√
2π

p(p− 1)

(
log x

p

) 2−p
2p−2

e
(p−1)

(
log x
p

)p/(p−1)

,

where α > 0 and in the last formula 1 < p < 2, and throughout x→∞
by positive values.

These results may of course be used to give an upper limit for the
modulus of the particular function considered when x is not necessarily
real, and so for M(r). Thus in the first case

M(r) 4 r1/2αe(α/e)x1/α

.

[The reader who wishes to become familiar with the theory of inte-
gral functions should begin by reading Borel’s Leçons sur les fonctions
entières. Some additions will be found in the notes at the end of the
same writer’s Leçons sur les fonctions méromorphes. He should then
read two memoirs by E. Lindelöf; a short one in the Bulletin des Sci-
ences Mathématiques, t. 27, p. 1, and a long one in the Acta Societatis
Fennicae, t. 31, p. 1. Some of the results of this last paper were proved
independently by Boutroux (Acta Mathematica, t. 28, pp. 97 et seq.);
but M. Boutroux’s important memoir is largely occupied by a discus-
sion of some of the most difficult points in the theory.

Much of the theory has been developed in a very simple and elemen-
tary way by Pringsheim (Math. Annalen, Bd. 58, S. 257); and the reader
should certainly consult a short note by Le Roy (Bulletin des Sciences
Mathématiques, t. 24, p. 245). But, after reading the works of Borel
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and Lindelöf mentioned above, he will be wise to turn to Vivanti’s Teo-
ria delle funzioni analitiche (German translation by Gutzmer), which
contains by far the fullest treatment of the subject yet published, and
an exhaustive list of original memoirs.]

E. Power series with a finite radius of convergence.

Suppose that a1 + a2 + . . . is a divergent series: for simplicity sup-
pose that an is always positive and steadily increases or decreases as
n increases. Further suppose e−δn ≺ an ≺ eδn, so that

∑
anx

n is con-
vergent if 0 6 x < 1. Then a large number of interesting results have
been established connecting the increase of an, as n→∞, and that of
f(x) =

∑
anx

n as x → 1. The fundamental result is: if an ∼ Cbn,
or, more generally, if (a1 + a2 + · · ·+ an) ∼ C(b1 + b2 + · · ·+ bn), and
f(x) =

∑
anx

n, g(x) =
∑
bnx

n, then

f(x) ∼ Cg(x).

From this theorem it may be deduced that∑ xn

np
∼ Γ(1− p)

(1− x)1−p (p < 1),

F (α, β, γ, x) ∼ Γ(γ) Γ(α + β − γ)

Γ(α) Γ(β)

1

(1− x)α+β−γ (α + β > γ)

F (α, β, α + β, x) ∼ Γ(α + β)

Γ(α) Γ(β)
l

(
1

1− x

)
.

Of further results the following is typical: if

an ∼ np/n ln . . . lm−1n(lmn)q . . . (lm+kn)qk ,

then

F (x) ∼ Γ(p)

/{
(1− x)p+1

× 1

1− x
l

1

1− x
. . . lm−1

1

1− x

(
lm

1

1− x

)q
. . .

(
lm+k

1

1− x

)qk }
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if p > 0, q 6= 1: but

F (x) ∼ 1

/{
(1−q)

(
lm

1

1− x

)q−1(
lm+1

1

1− x

)q1
. . .

(
lm+k

1

1− x

)qk}
if p = 0, q < 1 (if p < 0 or p = 0, q > 1, then

∑
an is convergent).

Thus, e.g.∑ npxn

(lx)q
∼ Γ(p+ 1)

/{
(1− x)p+1

(
l

1

1− x

)q}
.

As specimens of further results of this character we may quote

x+ x4 + x9 + · · · ∼ 1
2

√
π

1− x
,

x+ xα + xα
2

+ · · · ∼ 1

la
l

(
1

1− x

)
(a > 1),∑

anxn
2

∼ e

{
1
4

(la)2

l(1/x)

}
(a > 1),∑

en/lnxn = e2{u/(1− x)} (u ∼ 1).

Many similar results have been established about series other than
power series: thus∑ xn

n(1 + xn)
∼ 1

2 l

(
1

1− x

)
,∑ xn

1− xn
∼ 1

1− x
l

(
1

1− x

)
.

As an example of a more precise result we may quote the formula∑ xn

1 + x2n
= 1

4

{
π

l(1/x)
− 1

}
+O{(1− x)∆}.

[See
Bromwich, Infinite series, pp. 131 et seq., 171 et seq.;
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Le Roy, Bulletin des Sciences Mathématiques, t. 24, pp. 245 et seq.;
Lasker, Phil. Trans. Roy. Soc., (A), vol. 196, p. 433;
Pringsheim, Acta Mathematica, t. 28, p. 1;
Barnes, Proc. Lond. Math. Soc., vol. 4, p. 284; Quarterly Journal,

vol. 37, p. 289;
Hardy, Proc. Lond. Math. Soc., vol. 3, p. 381; ibid., vol. 5, p. 197;

ibid., vol. 5, p. 342;
where further references will be found. These writers also consider the
extensions of such results to the field of the complex variable.]



APPENDIX III.

SOME NUMERICAL ILLUSTRATIONS.

Mr J. Jackson, scholar of Trinity College, has been kind enough to
calculate for me the following numerical results, which will, I think,
be found instructive as comments on some of the matters dealt with
in the body of this tract and in Appendix II. It will of course be un-
derstood that, except in one or two instances, they are approximations
and sometimes quite rough approximations.

1. Table of the functions log x, log log x, log log log x, etc.

x log x log2 x log3 x log4 x log5 x

10 2.30 0.834 −0.182
103 6.91 1.933 0.659 −0.417
106 13.82 2.626 0.966 −0.035
1010 23.03 3.137 1.143 0.134 −2.011
1015 34.54 3.542 1.265 0.235 −1.449
1020 46.05 3.830 1.343 0.295 −1.221
1030 69.08 4.235 1.443 0.367 −1.003
1060 138.15 4.928 1.595 0.467 −0.762
10100 230.26 5.439 1.693 0.527 −0.641
101000 2302.58 7.742 2.047 0.716 −0.334

10106
2303× 103 14.650 2.685 0.987 −0.013

101010
2303× 107 23.860 3.172 1.154 0.144
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2. Table of the functions ex, ee
x
, ee

ex

, etc.

x ex e2x e3x e4x

1 2.718 15.154 3,814,260 101,656,510

2 7.389 1618.2 5.85× 10702

3 20.085 5.28× 108 102.295×108

5 148.413 2.85× 1064 101.24×1064

10 22026 9.44× 109565

The function log x is defined only for x > 0, log2 x for x > 1,
log3 x for x > e, log4 x for x > ee = e2, and so on. The values of
the first few numbers e, e2, e3, . . . are given above, viz. e = 2.718,
e2 = 15.154, e3 = 3,814,260, e4 = 101,656,510.

3. Table of the functions n!, nn, nn
n
.

n n! nn nn
n

1 1 1 1
2 2 4 16
3 6 27 7.634× 1012

4 24 256 1.491× 10154

5 120 3,125 9.55× 102,184

6 720 46,656 2.7× 1036,305

7 5,040 823,543 1.4× 10695,974

8 40,320 16,777,216 1015,151,345

9 362,880 3.8742× 108 10369,693,100

10 3,628,800 1010 1010,000,000,000

100 9.346× 10157 10200

1010 109.57×1010
101011
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4. Table to illustrate the convergence of the series.

(1)
∞∑
3

1

n log n(log log n)2
. (2)

∞∑
2

1

n(log n)2
. (3)

∞∑
1

1

ns
(s = 1.1).

(4)

∞∑
1

1

ns
(s = 1.5). (5)

∞∑
1

1

ns
(s = 2). (6)

∞∑
1

1

ns
(s = 10).

(7)
∞∑
1

1

ns
(s = 100). (8)

∞∑
0

xn (x = .9). (9)
∞∑
0

xn (x = .5).

(10)

∞∑
0

xn (x = .1). (11) 1 +
1

2!
+

1

3!
+ . . . . (12) 1 +

1

22
+

1

33
+ . . . .

(13)
∞∑
0

xn
2

(x = .9). (14)
∞∑
0

xn
2

(x = .5) (15)
∞∑
0

xn
2

(x = .1).

(16)
1

111 +
1

222 +
1

333 + . . . .

Number of terms required to
calculate the sum correctly to

Series Sum 2 10 100 1000
decimal places∗

1 38.43 103.14×1086

2 2.11 7.23× 1086 108.6×109

3 10.58 1033 10113 101013 1010013

4 2.612 160,000 16× 1020 6× 10200 16× 102000

5 1
6π

2 = 1.64493 200 2× 1010 2× 10100 2× 101000

6 1.0009846 1 11 1.093× 1011 1.093× 10111

7 1 + (1.27× 10−30) 1 1 10 1.213× 1010

8 10 73 247 2214 21883
9 2 9 36 336 3325
10 10/9 3 11 101 1001
11 e− 1 = 1.718282 5 13 70 440
12 1.291286 3 10 57 386
13 3.234989 8 15 46 148
14 1.564468 3 6 19 58
15 1.100100 2 4 11 32
16 1.062500 2 2 3 4
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Such a series as (7) is of course exceedingly rapidly convergent at
first, i.e. a very few terms suffice to give the sum correctly to a con-
siderable number of places; but if the sums are wanted to a very large
number of places, even the series (8) proves to be far more practicable.

Mr William Shanks (Proc. Roy. Soc., vol. 21, p. 318) calculated the
value of π to 707 places of decimals from Machin’s formula

π = 16

(
1

5
− 1

3 · 53
+

1

5 · 55
− . . .

)
− 4

(
1

239
− 1

3 · 2393
+ . . .

)
.

He does not state the number of terms he found it necessary to use, but,
in a previous calculation to 530 places, used 747 terms of the first and
219 terms of the second series. He also (ibid., vol. 6, p. 397) calculated e
to 205 places from the series (11).

5. Table to illustrate the divergence of the series

(1)
1

log log 3
+

1

log log 4
+ . . . . (2)

1

log 2
+

1

log 3
+ . . . .

(3) 1 +
1√
2

+
1√
3

+ . . . . (4) 1 +
1

2
+

1

3
+ . . . .

(5)
1

2 log 2
+

1

3 log 3
+ . . . . (6)

1

3 log 3 log log 3
+

1

4 log 4 log log 4
+ . . . .

∗The phrase ‘calculate the sum correctly to m decimal places’ is used as equiv-
alent to ‘calculate with an error less than 1

2 × 10−m.’ In the case of a very slowly
convergent series the interpretation affects the numbers to a considerable extent.
The numbers would be considerably more difficult to calculate were the phrase
interpreted in its literal sense.
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Number of terms required to make the sum greater than

Series 3 5 10 100 1000 106

1 1 1 1 116 1800 2.6× 106

2 3 7 20 440 7600 1.5× 107

3 5 10 33 2500 2.5× 105 2.5× 1011

4 11 82 12390 1043 10.43×103
10.43×106

5 8690 1.3× 1029 104300 105×1042

6 1 60 to 70 1010100

6. Roots of certain equations.

(i) The equation ex = x1,000,000 has a root just larger than
unity (the excess of the root over unity being practically 10−6)
and a large root in the neighbourhood of 16,610,800. The equation
ex = 1,000,000x1,000,000 has roots nearly equal to those of the above.
The one near unity is practically 12.82x10−6 less than unity, while the
large root exceeds the root of the above equation by about 13.82.

(ii) The equation ex
2

= x1010
has a root somewhere near 357,500.

(iii) The equation ee
x

= 1010x10e1010x10
has a root near 64.7.

The root differs by less than 10−26 from the corresponding root of
ex = 1010x10. The corresponding root of ex = x10 is about 35.8.

(iv) The positive roots of xx
x

= 1,000,000 and of xx
x

= 101,000,000

are approximately 2.68 and 7.11.

(v) If x10 = 10y, then for x = 100, y = 20; and for x = 1010,
y = 100.

If x1010
= 1010y , then for x = 100, y = 10.30; for x = 1010, y = 11;

and for x = 101010
, y = 20.

If x101010

= 101010y

, then for x = 1010, y = 10 + (4.3 × 10−11); for

x = 101010
, y = 10 + (4.3× 10−10); and for x = 10101010

, y = 10.30.
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7. Some numbers of physics.

The distance to α Centauri is roughly 26,000,000,000,000 miles or
1.65× 1018 inches. The number of inches lies between 19! and 20! and
is approximately equal to ee

3.74
or 16e

e
. Again, writing 15 letters to the

inch (an average size in print) a line to the star would be sufficient for

the writing at length of 102.47×1019
. The latter number is approximately

equal to (14× 1017)!, ee
e3.83

, or (106.5×1012
)e
ee

.
If we take the distance to the end of the visible universe to be that

through which light travels in 10,000 years, we find that this distance
when expressed in wave-lengths of sodium light is measured roughly by
the numbers

1.6× 1026, 26!, ee
4.10

, (53.6)e
e

, 3.293.293.29

.

If we assume the average distance between the centres of two ad-
jacent molecules of the earth’s substance to be 10−8 cm., we find that
the number of molecules in the earth is roughly

10.8× 1050, 42!, ee
4.77

, (2333)e
e

, 3.563.563.56

.
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